Relation Between Pitting Potential and PREN Values for Ferrite and Austenite in Duplex Stainless Steels

Daniella Caluscio Dos Santos, Isabelle Monfrinatti Macarrão & Rodrigo Magnabosco

BHM Berg- und Hüttenmännische Monatshefte

ISSN 0005-8912

Berg Huettenmaenn Monatsh DOI 10.1007/s00501-019-00925-7

Your article is protected by copyright and all rights are held exclusively by Austrian Society for Metallurgy of Metals (ASMET) and Bergmännischer Verband Österreich (BVÖ). This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".

Author's personal copy

Originalarbeit

Berg Huettenmaenn Monatsh https://doi.org/10.1007/s00501-019-00925-7 © Austrian Society for Metallurgy of Metals (ASMET) and Bergmännischer Verband Österreich (BVÖ) 2019

Relation Between Pitting Potential and PREN Values for Ferrite and Austenite in Duplex Stainless Steels

Daniella Caluscio Dos Santos, Isabelle Monfrinatti Macarrão, and Rodrigo Magnabosco

Materials Eng. Dept., FEI University, S.B. Campo-SP, Brazil

Received October 9, 2019; accepted November 27, 2019

Abstract: This work aims to investigate the relation between PREN of ferrite and austenite and the pitting potential of UNS S31803 DSS. Samples were solution-treated between 1040 °C and 1150 °C generating different phase fractions and, consequently, different alloy element con-ThermoCalc[®] thermodynamic simulations were tents. performed to predict the chemical composition of each phase allowing the PREN calculations. Besides, potentiodynamic polarization tests were conducted in 0.6M NaCl solution at 70 °C to correlate pitting potential (Epit) and PREN. Thermodynamic simulation reveals that PREN for ferrite is higher than austenite between 975 °C and 1300 °C. Nevertheless, the electrochemical results show a slight reduction of pitting potential with increasing ferrite content, probably related to the reduction of Cr and Mo contents in this phase. Pits were found preferably in ferrite and in ferrite/austenite interfaces. This behavior suggests that, even with only a slight reduction of pitting potential and, consequently, a discrete corrosion resistance reduction, ferrite is more susceptible to pitting. No pits were found in austenite, suggesting that higher N contents are fundamental to maintain the corrosion resistance of this phase.

Keywords: Duplex, Pitting, Polarization, PREN

Zusammenhang zwischen Lochfraßpotential und PREN-Werten für Ferrit und Austenit in korrosionsbeständigen Duplex-Stählen

Zusammenfassung: Dieser Beitrag zielt darauf ab, die Beziehung zwischen PREN von Ferrit und Austenit und dem Lochfraßpotenzial von UNS S31803 DSS zu untersuchen. Die Proben wurden zwischen 1040 °C und 1150 °C lösungs-

Professor R. Magnabosco (⊠) Materials Eng. Dept., FEI University, Av. H.A.C. Branco, 3972, office K501, 09850-901 S.B. Campo-SP, Brazil rodrmagn@fei.edu.br geglüht und erzeugten unterschiedliche Phasenanteile und damit unterschiedliche Legierungselementgehalte. ThermoCalc® thermodynamische Simulationen wurden durchgeführt, um die chemische Zusammensetzung jeder Phase vorherzusagen und die PREN-Berechnungen durchzuführen. Außerdem wurden potentiodynamische Polarisationstests in 0,6M NaCl-Lösung bei 70°C durchgeführt, um das Lochfraßpotenzial (Epit) und PREN zu korrelieren. Die thermodynamische Simulation zeigt, dass PREN für Ferrit zwischen 975°C und 1300°C höher als Austenit ist. Dennoch zeigen die elektrochemischen Ergebnisse eine leichte Reduzierung des Lochfraßpotentials mit steigendem Ferritgehalt, wahrscheinlich im Zusammenhang mit der Reduzierung des Cr- und Mo-Gehalts in dieser Phase. Korrosionsangriffe wurden vorzugsweise in Ferrit und in Ferrit/Austenit-Grenzflächen gefunden. Dieses Verhalten deutet darauf hin, dass Ferrit selbst bei nur geringer Reduzierung des Lochfraßpotenzials und damit einer diskreten Reduzierung der Korrosionsbeständigkeit anfälliger für Lochfraß ist. Es wurden keinKorrosionsangriff im Austenit gefunden, was darauf hindeutet, dass höhere N-Gehalte von grundlegender Bedeutung sind, um die Korrosionsbeständigkeit dieser Phase aufrechtzuerhalten.

Schlüsselwörter: Duplex, Lochfraß, Polarisation, PREN

1. Introduction

Duplex Stainless Steels (DSS) are composed by ferrite (α) and austenite (γ) in approximately equal amounts and have been used in applications where both high mechanical and corrosion resistances are required [1–3]. The higher N contents enhances both properties and also its weldability [3], allowing its application in the chemical, oil and gas, pulp and paper, food, and energy industries. Thus, the microstructure and the alloy element additions as Cr, Mo, and N [2] contribute to the DSS properties.

TABLE 1 Chemical composition of UNS S31803 DSS (wt%)												
Cr	Ni	Мо	Mn	Ν	С	Si	Cu	Со	Р	S	Nb	Fe
22.48	5.74	3.20	1.42	0.162	0.018	0.35	0.15	0.07	0.019	0.001	0.006	Bal

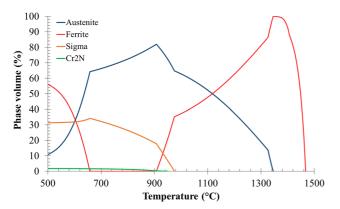
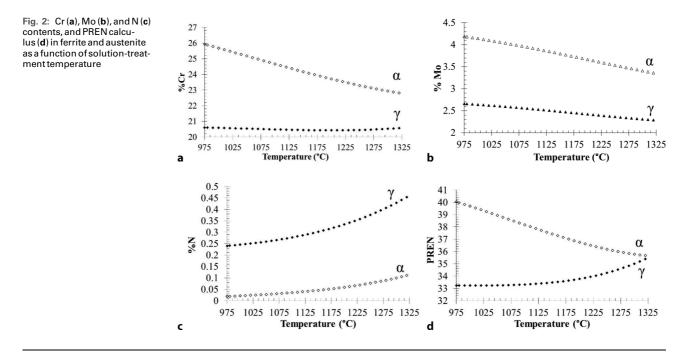


Fig. 1: Equilibrium phase volume percent of UNS S31806 DSS between 500 and 1500 $^{\circ}\mathrm{C}$

The Pitting Resistance Equivalent Number (PREN) [4, 5] is widely used to categorize duplex steels as super duplex (above 40), standard duplex (between 30 and 40), and lean duplex (below 30) and is also used to rank this material on corrosion resistance using chemical composition (%wt) as presented in Eq. 1

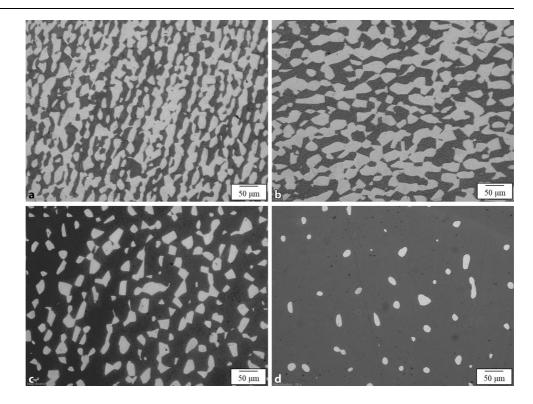

$$PREN = %Cr + 3.3(%Mo + 0.5\%W) + 16\%N$$
(1)

Nevertheless, the PREN does not consider microstructural effects as grain size, intermetallic and/or secondary phases, other non-homogeneities like inclusions, and the alloy element partition in the duplex microstructure that may influence the electrochemical behaviour of these materials [4, 5]. In DSS, ferrite contains the highest contents of Cr, Si, and Mo. In contrast, Ni, Mn, Cu, C, and N are preferably partitioned to austenite [1, 2, 6].

Garfias-Mesias [7] suggests that the use of PREN to predict pitting corrosion resistance in DSS assumes that the steel production has used the correct heat treatment to adjust the recommended ferrite and austenite volume fractions, the absence of intermetallic phases or precipitates, and the partition of alloy elements of the material. Furthermore, the quality control must ensure that P, S, and C contents, and the nucleation sites for pitting formation are maintained in low levels.

Not only the presence of alloy elements but also its partition between ferrite and austenite may influence the corrosion resistance of DSS. Magnabosco [8] found pitting corrosion in both ferrite and austenite phases. Nevertheless, austenite presents the high N contents suggesting high corrosion resistance of this phase. The evidence found in literature indicates that PREN may not be evaluated for the global chemical composition of DSS, but for each phase separately, and then the PREN to be considered for the material is the lower value found.

This work aims to investigate the relationship between PREN of ferrite and austenite in UNS S31803 samples with different volume fractions and the pitting potential registered to each sample condition. The chemical composition of ferrite and austenite with different volume fraction was determined by thermodynamic calculations.



© Austrian Society for Metallurgy of Metals (ASMET) and Bergmännischer Verband Österreich (BVÖ)

Author's personal copy

Originalarbeit

Fig. 3: UNS S31803 duplex stainless steel with different ferrite (*black*) volume fraction: a 44.9± 2.8%; b 49.0± 3.8%; c 82.7± 1.9%; d 96.6± 1.4%. Modified Beraha etching

TABLE 2 UNS S31803 duplex stainless steel sample characterization parameters										
Sample	% Ferrite	ThermoCalc® predicted equilibrium temperature (°C)	PREN(α)	PREN(γ)						
(a)	44.9 ± 2.8	1070	39.1	33.1						
(b)	49.0 ± 3.8	1110	38.3	33.2						
(c)	82.7±1.9	1310	37.9	33.4						
(d)	96.6±1.4	1340	37.4	33.4						

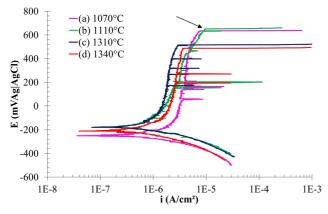


Fig. 4: Potentiodynamic polarization curves of UNS S31803 duplex stainless steel in 0.6 M NaCl solution at 75 °C in samples with different ferrite fractions

2. Methodology

The studied material, an Outokumpu UNS S31803 DSS, has the chemical composition given in Table 1. The specimens were obtained from a 3mm sheet with dimensions of approximately 30mm width and 60mm length with different solution heat treatments conditions.

Heat-treated specimens were abraded to a 220-grit finish before mounting in thermosetting plastic, leaving an exposed surface area of approximately 0.5 cm^2 , parallel to the rolling direction. The mounted samples were metallographically polished with the final polishing provided by a 1-µm diamond abrasive. The samples were etched with a modified Beraha reagent (composed of 20 mL HCl, 80 mL distilled water and 1g K₂S₂O₅; to this stock solution, 2g of NH₄E.HF were added just before the etching) just before the metallographic characterization through optical microscopy.

A thermodynamic simulation using the ThermoCalc® version 2018b software was performed using the TCFE8 thermodynamic database. The PREN calculation was obtained from the simulated Cr, Mo, and N equilibrium contents, and its relation to the pitting potential was determined through electrochemical tests.

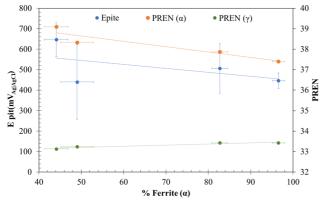


Fig. 5: Pitting potential (Epit) and PREN as a function of ferrite percent

Potentiodynamic polarization tests were conducted in a 0.6M (3.5%wt) sodium chloride solution (pH=6.5) exposed to laboratory air, in a jacket cell at 75 °C at a scan rate of 1 mV/s, beginning 200 mV below the open circuit potential (OCP) measured after 5 min of immersion. The test cell had a platinum wire as counter electrode and Ag|AgCl (silver|silver chloride) as a reference electrode. Immediately after the polarization, the sample surfaces were washed with distilled water and then with ethyl alcohol (C₂H₅OH), dried with hot blown air, and then analysed through OM.

3. Results and Discussion

The thermodynamic simulation using the ThermoCalc® software with the TCFE8 database presented in Fig. 1 shows that above 975 °C only ferrite and austenite coexist

in equilibrium. Both sigma and chromium nitride only appear below this temperature.

Cr, Mo, and N contents estimated by the ThermoCalc® software are shown in Fig. 2a–c, and are the base for PREN calculations shown in Fig. 2d. As expected, ferrite is richer in Cr and Mo and austenite in N. Nevertheless, when analyzing Fig. 2d, PREN of ferrite (PREN α) is higher than PREN of austenite (PREN γ) in the whole temperature range between 500°C and 1500°C, except at 1320°C where the PREN of ferrite and austenite are equal. Thus, considering only the chemical composition of the material, ferrite could be more corrosion resistant than austenite.

Fig. 3 explores the metallographic analysis of the samples with a different ferrite volume percent. The quantitative stereology of those samples for ferrite volume fraction determination allowed the prediction of the equilibrium temperature through the ThermoCalc® software and the precise values of PREN of ferrite and austenite, as shown in Table 2.

Analyzing Table 2, it is evident the PREN- α reduction with increasing ferrite volume fraction as PREN- γ remains almost constant. The partition of alloy elements on both phases suggests that, as the ferrite volume fraction increases, the ferrite corrosion resistance decreases as Cr and Mo contents also decreases.

Electrochemical tests through polarization curves were conducted in all the samples, and the typical results are presented in Fig. 4. The pitting potential from which a pit nucleates and grows in stable conditions decreases as he ferrite volume fraction increases probably caused by Cr and Mo reduction in this phase leading to PREN- α reduction. This observation suggests that ferrite plays an important role in pitting corrosion resistance of the material.

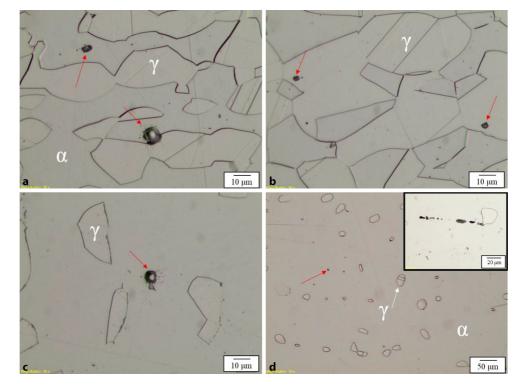


Fig. 6: Optical micrography of UNS S31803 after potentiodynamic tests in 0.6 M NaCl solution at 75 °C etched with oxalic acid. Pits are indicated by *red arrows*. Ferrite volume fraction of a 44.9±2.8%; b 49.0±3.8%; c 82.7±1.9%; d 96.6±1.4%

Author's personal copy

The analysis of both pitting potentials (E_{pit}) and the PREN for ferrite and austenite with increasing ferrite percent is necessary and is presented in Fig. 5. A light decrease in the medium pitting potential values with increasing ferrite percent (and reduction of PREN α) is observed. The increase in ferrite percent leads to the decrease in Cr and Mo contents more sharply in ferrite if compared to austenite as previously seen in Fig. 2a, b. This behaviour may be related to the slight decrease of pitting potential and in PREN α , observed in Fig. 5. Instead, the PREN γ is almost constant even in different ferrite volume contents.

Other evidence of this behaviour may be observed in the optical microscopy of the samples after polarization tests (Fig. 6). Pitting formation occurs preferably in ferrite and in ferrite/austenite interfaces. In the samples with a lower ferrite volume fraction, pits were found preferably in ferrite/ austenite interfaces as presented in Fig. 6a, but also some pits were present inside the ferrite phase. As low solution treatment temperatures lead to a higher number of interfaces, as shown in Fig. 3a, and knowing that pitting occurs preferably in non-homogeneities like grain boundaries, inclusions and interfaces, the occurrence of pitting in ferrite/ austenite interfaces is justified.

However, in the samples where the ferrite volume percent is high (Fig. 3c, d), pits are found in the ferrite phase or in non-homogeneities like inclusions (Fig. 6c, d). No pitting was found in austenite islands, showing that even PREN- α is higher PREN- γ , apparently ferrite is less pitting resistant than austenite in the tested conditions. Probably the explanation for this behaviour is not in Cr and Mo contents in both phases, but the presence of N in austenite. This result corroborates other authors' conclusions [2, 8] who stated that the austenite phase is more corrosion resistant than ferrite in duplex steels. As reported in those publications, ammonia formation as the product of the reaction of N with H dissolved in the solution would raise locally the pH leading to the passivation of the materials surface, reducing the tendency to pitting occurrence [2, 9].

4. Conclusions

The thermodynamic simulation reveals that, using Cr, Ni, Mo, and N equilibrium contents, the PREN for ferrite is

higher than austenite between 975 °C and 1300 °C. Nevertheless, the electrochemical results show a slight reduction of pitting potential with increasing ferrite content, probably related to the reduction of Cr and Mo contents in this phase. Pits were found preferably in ferrite and in ferrite/austenite interfaces. This behavior suggests that, even with only a slight reduction of pitting potential and, consequently, a discrete corrosion resistance reduction, ferrite is more susceptible to pitting. No pits were found in austenite, suggesting that higher N contents are fundamental to maintain the corrosion resistance of this phase.

Acknowledgements. The authors thank CNPq-Brasil for grant 301458/2016-2.

References

- Solomon, H. S.; Devine, T. M.: Duplex Stainless Steels: A tale of two phases Proceedings, Conference Duplex Stainless Steels, ASM Metals Park, Ohio, 1984, p. 693
- 2. Nilsson, J. O.: Super Duplex Stainless Steel, Materials Science and Technology, 8 (1992), p. 685
- Vannevik, H.: Effect of elemental partitioning on pitting resistance of high nitrogen duplex stainless steels, ISIJ international, 36 (1996) p 807
- International Organization for Standardization. ISO15156-3, Petroleum and natural gas industries—Materials for use in H₂Scontaining environments in oil and gas production—Part 3: Crackingresistant CRAs (corrosion resistant alloys) and other alloys, 2015
- Iris Alvarez-Armas (Ed), Suzanne Degallaix-Moreuil (Ed), Duplex Stainless Steels, ISBN: 978-1-848-21137-7 November 2009 Wiley-ISTE p. 51
- J.A. Sedriks. Corrosion of stainless steels, John Wiley, New York (1996).
- 7. Garfias-Mesias, L. F.: Understanding why PREN alone cannot be used to select duplex stainless steels, Proceedings, Nace International Conference, Dallas, 2005
- Magnabosco, R.; Alonso-Falleiros, N.: Pit Morphology and its Relation to Microstructure of 850 °C Aged Duplex Stainless Steel, Corrosion, 2005 (February 2005), p.130. https://doi.org/10.5006/1.3278167
- Lothongkum, G.; Wongpanya, P.; Morito, S.; Furuhara, T.; Maki, T.: Effect of nitrogen on corrosion behavior of 28Cr-7Ni duplex and microduplex stainless steels in air-saturated 3.5wt% NaCl solution, Corrosion Science, 48 (2006), p. 137

Publisher's Note. Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.