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Abstract
The aim of this work was to identify the occurrence of machine tool wear in carbide inserts applied in a machine turning center
with two steel materials. Through the data collected with an open-source communication protocol during machining, eighty trials
of twenty runs each were performed using central composite design experiments, resulting in a data set of eighty lines for each
tested material. The data set consisted of forty lines with the tool wear condition and forty lines without. Machining parameters
were set to be in the range of the usual industrial values. The cutting parameters in the machining process were cutting speed, feed
rate, cutting depth, and cutting fluid applied in the abundance condition and without cutting fluid (dry machining). The collected
data were the spindle motor load, X-axis motor load, and Z-axis motor load in terms of the percentage used. AISI P20 and AISI
1045 steels workpieces were tested with both new and worn inserts, and a flank tool wear of 0.3 mm was artificially induced by
machining with the same material before the data collecting experiment. Two approaches were used in order to analyze the data
and create the machine learning process (MLP), in a prior analysis. The collected data set was tested without any previous
treatment, with an optimal linear associative memory (OLAM) neural network, and the results showed 65% correct answers in
predicting tool wear, considering 3/4 of the data set for training and 1/4 for validating. For the second approach, statistical data
mining methods (DMM) and data-driven methods (DDM), known as a self-organizing deep learning method, were employed in
order to increase the success ratio of the model. Both DMM and DDM applied along with the MLP OLAM neural network
showed an increase in hitting the right answers to 93.8%. This model can be useful in machine monitoring using Industry 4.0
concepts, where one of the key challenges in machining components is finding the appropriate moment for a tool change.
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1 Introduction

Industry 4.0 is one of the terms used to describe the high-
technology strategy that was promoted by the German

government and has been implemented by the industry in
the past decade. It covers a set of leading-edge internet tech-
nologies to make production systems more flexible and col-
laborative. In this approach, it is possible to create smart
manufacturing environments which integrate big data, ad-
vanced analytics, high-performance computing, the
Industrial Internet of Things (IIoT), and artificial intelligence
to produce highly customizable goods with higher quality at
lower costs [1]. Manufacturing has been a fundamental aspect
of national development and prosperity. It contributes greatly
to an individual’s quality of life, a nation’s growth, and the
power and position of a country. Machine learning and net-
working of cyber-physical technologies are on the rise [2].
The direct contact between the cutting tool and workpiece
material, and the chips during the machining operation, im-
poses extreme thermal and mechanical stresses on the cutting
tool. As a result, changes to the geometry, volume loss, and
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the sharpness of the cutting tool can occur either gradually or
abruptly. These changes, which are known as tool wear, nor-
mally take place at rates that are dependent upon the machin-
ing conditions, workpiece material, and the cutting tool mate-
rial or geometry [3]. The tool condition and life span are crit-
ical components of cost optimization. There is a real need to
devise means of detecting tool wear as well as to predict the
remaining life for effective management of the manufacturing
lead time. In this context, several methods are being investi-
gated to effectively monitor the wear condition of cutting tools
in automated cutting processes and then detect the correct time
to perform the exchange. This is important because, by being
aware of the wear pattern behavior, engineers can determine
the most economical time for exchange, avoiding reaching the
stage of tool breakdown [4]. The ISO standard 3685 estab-
lishes a limit of 0.3 mm for average flank wear (VBB).

These tool life monitoring methods can be categorized basi-
cally into two main groups: direct and indirect methods [5].
Direct methods (DM) measure the actual value, which could
be the flank wear, of faults using laser, optical, and ultrasonic
sensors. The most common procedure uses computational vi-
sion [6, 7]. Another approach used is indirect methods, where
the physical parameters of the process or machine are employed
to represent the tool condition indirectly. These parameters
could be vibration, force, or sound [8]. The indirect methods
(IM) in turn can be categorized by two approaches: continuous
tool wear estimation and tool wear classification. The basic
difference is how the tool wear is handled: as a continuous
variable and treated using data-driven techniques, or as a dis-
crete variable, belonging to specific classes defined by the au-
thors. Although the continuous estimation is more precise, the
majority of current research considers tool wear detection based
on tool wear classification to be more suitable, mainly for prac-
tical reasons, since the change is performed by the operator
based on a pattern or range previously established [9].

Tool condition monitoring has been gaining more consid-
eration in the automated manufacturing process in recent
times [10] and the current tool wear level directly affects the
surface quality of workpieces and even the performance of
machine tools. Tool breakage may lead to more serious con-
sequences such as scratching and scrapping of the workpieces,
paralysis of the manufacturing system, and even operator ca-
sualties [11]. The propagation of tool wear is affected by the
complex material–process interactions and process conditions
(e.g., feed rate, cutting speed, dry vs. cutting fluid), which
together make tool condition prognosis a major challenge in
terms of (1) relating sensing data with the tool condition and
(2) revealing the tool wear progression pattern based on var-
iations in the sensing data. Compared with a new tool, a worn
tool has a different cutting edge geometry and, accordingly,
the associated sensing signals [12].

In a review of the literature, it is possible to observe differ-
ent achievements in IM. [9] proposed a tool monitoring

system using a convolutional neural network (CNN) as a deep
learning method. Based on the results, CNN consistently
responded better to other machine learning algorithms be-
tween all three signals (support vector machine, Bayesian rig-
id network, and K nearest neighbor method) from two
accredited data sets, which proved its robustness and high
performance in a milling process. [13] proposed a new drill
wear condition monitoring method based on a fuzzy neural
network. Spectral analysis of the vibration signal was used to
generate a set of indices for monitoring. The relationship be-
tween the tool wear condition and these indices was described
by a fuzzy neural network and led to feasible results [7]. [14]
had developed a new tool wear class detection method based
on a supervised learning data mining technique (LAD—
Logical Analysis of Data), which has the property of finding
interpretable patterns that were embedded in the data.
Through an analysis of the generated patterns, class identifiers
were found and the machining variables that have a clear and
apparent influence on the tool wear were determined. The
accuracy of LAD was evaluated and validated by comparison
with an ANN technique and led to better classification accu-
racy [14].

[1] implemented an algorithm for the prediction of flank
tool wear in high-speedmachining inmilling processes. It was
conducted with RF (Random Forest) and MapReduce-based
PRF algorithms. The MapReduce-based PRF (Parallel
Random Forest) algorithm was implemented on the Amazon
EC2 cloud. The condition monitoring data, including cutting
force, vibration, and acoustic emission, collected from 315
milling tests were used to evaluate the performance of the
algorithms. By implementing RF in parallel on the cloud, a
significant increase in the processing speed (14.7 times in
terms of increase in training time) was achieved, with a high
prediction accuracy of tool wear (8 times better) in terms of
the reduction in mean squared error.

[15] explored the effect of tool wear and surface roughness
during the CNC turning of D2 steel by using acoustic emis-
sion and force sensors by monitoring the flank wear until the
critical value of 0.3 mm. It was concluded that the methods for
sensing cutting tool wear are crucial in view of the optimum
use of cutting tools with an effective monitoring system, and
both the radial forces and the surface roughness increased
considerably as the wear progressed. The acoustic emission
was also analyzed, and parameters were found to increase
proportionally with tool wear.

In this paper, we propose a novel method to identify the
exchange point of a carbide insert in a lathe machine, through
data collected duringmachining using theMTConnect® com-
munication protocol. MTConnect® is a data and information
exchange standard that is based on a data dictionary of terms
describing information associated with manufacturing opera-
tions. This free and open protocol enables devices and systems
from different suppliers to capture and share information in a

2492 Int J Adv Manuf Technol (2020) 109:2491–2501



common format [16, 17]. The great advantage of this work is
that no expensive sensor or dynamometers were used, as in a
great number of the cited works. The signals were collected by
the common sensor from a machine installed during produc-
tion by the manufacturer and can be easily adopted in indus-
trial applications.

This paper is organized as follows: The next sections pres-
ent the background and formulation of the machine learning
algorithm which is used in this paper. Section 3 introduces the
materials and experimental methods which are used in this
study. The results and discussion are presented in Section 4
and we outline the main conclusions in Section 5.

1.1 IoT

The IoT dates back to 1998, described by a British re-
searcher and an MIT co-founder. Nowadays, it is essential
to monitor and control many applications [18]. According
to [19], the IoT, cloud computing, and CPS (cyber-
physical systems) are essential in Machine Tool 4.0,
which defines a new generation of machines that are
smarter, connected, accessible, and adaptive. IoT and in-
telligent sensing have been applied to the remote servic-
ing, condition monitoring, fault diagnosis, maintenance,
and management of the machine tool [20]. [21] talk about
Cloud manufacturing (CMfg), which is supported by IoT
and cloud computing and converts typical services in
smart manufacturing. IoT can help in many manufacturing
aspects. [22], for example, presents a study to analyze the
energy monitoring of a die casting machine, where the
feasibility of the method was demonstrated. Another ex-
ample is described by [23], who use the IoT to develop a
machine model for CNC machine-tools through OPC-UA,
and by [24] in a study of digital twin communication for
smart manufacturing.

MTConnect® is an open, royalty-free manufacturing com-
munication protocol that enables communication between
manufacturing devices and other software [25]. It has been
adapted for manufacturing factories to minimize the delay
time in communication and provide multiple sensor data
[26]. According to [27], MTConnect® has a great capability
for real monitoring and data exchange in manufacturing
systems.

The MTConnect® standard provides connectivity and the
ability to monitor and collect data across the entire production
line: machines, cells, devices, and processes. Its standard is
based on XML and HTTP Internet technology for real-time
data sharing directly from the machine panel or its sensors
[28]. Easy to implement, this network platform can help com-
panies monitor equipment or manufacturing cells, reducing
losses and optimizing production.

Figure 1 shows Mazak machines’ [29] general scheme
of the communication pattern application, where the

adapter consists of a communication card connected to
the machine panel that collects, through the application
programing interface (API), the CNC (computer numeric
control) information and sends it by the transmission con-
trol protocol (TCP) to the MTConnect® agent, who orga-
nizes and maintains the data for later transfer in the net-
work (HTTP).

Once available on the network and knowing the access
address, it is possible to collect the information from the
XML (Extensible Markup Language) file using any software
programming language. In this work, Python software was
used to read XML directly from the network where the ma-
chine was connected.

1.2 Machine learning

Machine learning is becoming very popular nowadays,
and is used in a lot of industries and activities, since its
major goal is to optimize systems and bring intelligence to
them [2]. According to [30], data-driven methods can be
used to predict tool wear using predictive models trained
by machine learning or pattern recognition algorithms.
Some researchers attempted to establish the relationships
between sensor signals and tool wear in their methods
based on machine learning, such as artificial neural net-
work and support vector machine [10, 30]. [2] also cites
evolutionary and swarm intelligence-based algorithms and
response surface methodology as a machine learning tech-
nique. [31], for example, presents a prediction model de-
velopment of machining force, cutting energy, and cutting
pressure in turning using three regression-based machine
learning techniques (polynomial regression, support vec-
tor machine, and Gaussian process regression) as well as
artificial neural networks. [32] used a hybrid approach,
also using machine learning to predict cutting forces with
a deep neural network and finite element analysis [2]. [33]
used a machine learning classification for modeling tool
life using a “true life curve” using shop floor production
data.

The optimal linear associative memory (OLAM) model,
as proposed by [34] in 1972, is a well-known computational
paradigm of associative memory. As such, information in
OLAM is stored distributed in a matrix operator, so that it
can recall stored data by specifying all or a portion of a key
(degraded key). OLAM has the property of providing rapid
recall of information, and it can tolerate local damage with-
out a great degradation in performance.

OLAM is a linear classifier and if the cases are not
linearly separable, the learning process will never reach a
point where all the cases are classified properly; in this
case, there will be fewer correct classifications than expect-
ed. Figure 2 shows a schematic operation.
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2 Methods and materials

2.1 Experiment

A design of experiments “Response Surface Design” with 6
center points was used to establish 20 experiments with the
parameters indicated in Table 1. Each set of 20 experiments
was then replicated with:

& usage of cutting fluid with new insert;
& usage of cutting fluid with worn insert;
& dry machining with new insert;
& dry machining with worn insert.

The machining experiments were conducted with two
kinds of steel workpieces, AISI 1045 and AISI P20, resulting
in a data set of 160 runs.

For the central composite design (CCD), the alpha value
applied was 1.682, creating the most extreme values of the
experiment, which combined and increased the spindle power
demand.

To ensure that the conditions tested were adequate, the
cutting parameters were selected based on the tool insert man-
ufacturer’s catalog. For AISI 1045 steel, values are quite com-
fortable; however, when higher mechanical property materials
are machined, the case of AISI P20 steel, it is noticed that the

upper parameters are at the limit of the operation, but can still
be used without great implications.

For the main machining experiments, two types of insert,
new and worn, were used. Insert average flank wear value
(VBB) was considered and set up as fixed for the tests, with
wear VBB = 0 meaning a new insert and VBB = 0.3 mm a
worn tool.

This variable certainly affected the net results on the runs. It
was made in this way to guarantee real conditions, as a work
condition in machining when the tool is new at the beginning
and the wear will increase up to VBB = 0.3 mm, when the tool
can be considered unusable.

To ensure the worn tool condition (VBB = 0.3 mm) con-
stant, an “artificial wear set up” was applied before the main
central composite design (CCD) experiments. The insert was
worn by machining work parts (same material) with cutting
parameters at the upper limit of their values for the CCD; the
wear was monitored until it reached 0.3 mm ± 0.05 mm. A
digital microscope was used for the tool wear control. Every
tool edge was used for only two CCD runs, this way assuring
less divergence from the original VBB condition.

Also, the cutting fluid was taken to be fixed for each se-
quence (20 tests) made with cutting fluid (first set) and with-
out (dry condition—second set).

The insert used was a standard CNMG 120408 PM from
Sandvik Coromant and the insert holder was Coroturn® 107.
A total of 80 runs was performed for each of the two materials
tested (AISI P20 and AISI 1045) in order to create a data set to
train a machine learning model.

The materials tested were:

& AISI P20 steel with the chemical composition: C 0.37%;
Cr 2.0%; Fe 94.73%; Mn 1.4%; Mo 0.20%; Ni 1.0%; Si
0.30%; S < = 0.010% and hardness corresponding to
291 HV.

Table 1 Cutting parameters

Input Low level High level

Cutting speed “vc” (m/min) 150 250

Feed rate “f” (mm/r) 0.2 0.3

Cutting depth “ap” (mm) 1 2

Cutting fluid Yes No

Insert tool New Worn
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Fig. 2 Schematic operation of an OLAM [34]
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& AISI 1045 with the chemical composition: C 0.46% Fe
98.5, Mn 0.70% P < = 0.040%, S < = 0.050% and hard-
ness of about 170 HV.

AnMTConnect linked with Python software was used for the
monitoring of the machine. Figure 3 shows the machining turn-
ing center Mazak Quick Turn 200MA with the main character-
istics:main spindle chuck size: 8 in.; maximum speed: 5000 rpm;
motor output (30 min rating): 15 kW; travel (X-axis): 225 mm;
travel (Z-axis): 605 mm. In Fig. 3, it is possible to observe the
insert tool in the initial condition and the worn insert.

Figure 4 presents an excerpt of the XML code generated by
the MTConnect® agent. As it is a standardized protocol, it is
possible through a programming resource to access all XML
instances that represent the data to be collected.

The collected data were as follows: CC—spindle load;
CCX—tool X-axis load; CCZ—tool Z-axis load; Pm—
spindle power, along with the parameters applied.

To access the instances and read the XML protocol data, a
program was created in Python software with the aim of
collecting the load values on the machine spindle motor, X-
axis servomotor, and Z-axis servomotor. A computer connect-
ed to the same network as the machine accessed the XML
protocol and acquired the information during the trial. The
start of collection was synchronized with the beginning of
machining, and the duration of the collection was estimated
beforehand to coincide with the end of machining.

The collected values were then automatically stored in a
spreadsheet for further data processing. In addition to the
spreadsheet, an application chart was generated for experi-
ment verification and validation.

3 Acquisition results and discussion

Figure 5 shows an example of the graph generated during one
of the tests. The default MTconnect® XML protocol update

frequency for the network is 1 s (1 Hz), and the MATLAB
script was programmed to acquire the file three times per
second (3 Hz), thus ensuring no loss of information during
the trial runs. The data processing consisted of eliminating the
initial and final values that represented the beginning and end
of the machining process, for example, in Fig. 5 eliminating
the first second of collection and the final 3 s. Once the values
were filtered, the values were averaged to make the responses
uniform.

Table 2 shows that some test input factor values have been
normalized to − 1 (not applied or non-existent factor) and 1
(used or existing), as is the case for the cutting fluid and for the
existence of tool wear.

After all the machining experiments, a data set of 160 lines
of runs was composed with their respective assigned values
along the input parameters.

4 Machine learning models

4.1 OLAM

An OLAM (optimal linear associative memory) linear neural
network was programmed from the results of the machining
tests, and the collected data set was tested without any previ-
ous treatment. The ultimate goal was to predict whether or not
tool wear was present during the machining process. OLAM
network training was done with 3/4 of the entire data set, 90
runs or lines, and the model’s effectiveness was tested/
validated by comparing the network response versus the wear
condition (VBB) of the 1/4 tests (30 lines) not used for
training.

The inputs for the OLAM model were the runs CC, CCX,
CCZ, Pm, RPM plus the input parameters of the runs with
cutting fluid, vc, f, and ap.

The OLAM neural network showed a rate of 65% correct
answers, which is also a good result, as the assessment of tool

(c)

(a)

(b)

Fig. 3 Machining turning center (a), new insert (b), and worn insert (c)
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wear on the shop floor is not always easy for the machine
operator to perform. The exact setup time for changing the
worn tool insert is always a challenge in manufacturing shops.

Overfitting issues were not observed, and the pro-
posed OLAM model was not able to give correct values
for all cases. The difficulty in preparing the main cut-
ting edge and small differences between them usually
causes variations in the results. These poor results can
be partially attributed to the standard deviation observed
in Table 3.

For the experimental run with no cutting fluid and wear
VBB = 0.3, the standard deviations observed in the CCX and
CCZ values were higher compared with the other results.
Probably, the OLAM weights associated with these

parameters were not able to identify this variation, resulting
in a loss of accuracy for this entire set of runs.

For real machining conditions, the presence of tool wear in
the process is a natural source of variation. Tool wear changes
the geometry associated with chip formation, which can in
turn modify the machine’s power consumption.

Identifying tool wear is a difficult task, and depends on the
operator’s expertise and knowledge as well as good vision,
because the value of VBB = 0.3 means that the operator has
to search for a defect of 0.3 mm on the tool’s side surface.

Another point is that OLAM is a linear classifier; if the
overall condition is not linear and if the cases are not linearly
separable, the learning process will never reach a point where
all the cases are classified properly.

Fig. 5 Signal example of one test

Fig. 4 Example from XML file generated in MTConnect®
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4.2 Data-driven methods

In order to improve the OLAM-MLP results, statistical
data mining methods (DMM) and data-driven methods
(DDM), known as a self-organizing deep learning meth-
od, were employed in order to increase the success ratio
of the model.

Aiming to assure the consistency of the data set values
obtained during the experimental setup, the Student’s t test
was first employed to search for test situations that could be

out of the normal distribution. This step was implemented as a
data mining procedure over the entire data set. The standard
deviation results associated with the worn tool condition
(Table 3) showed higher overall values. A hypothesis was
then raised in order to confirm the adherence of each test to
the entire data set.

After running the procedure, the data set was reduced
from 160 runs (lines) to 123 runs (lines), showing that 37
lines of information acquired were out of the normal dis-
tribution of the experimental design. This new set was
then clustered by the DDM self-organizing deep learning
method through the CC, CCX, and CCZ parameters,
resulting in two clusters (Figs. 7 and 8). The number of
clusters was defined by the elbow method, where the
number is chosen to be the value at which no significant
changes are sensed by the model due to new values of
clustering, the within clusters sum of squares method
(WCSS) (Fig. 6).

The clustering result can be viewed in Figs. 7 and 8, where
two red circles define the clusters points.

Figure 9a presents the flowchart for MLP OLAM single
implementation, where the whole data set was directly used
without any previous treatment. With this approach, the MLP-
OLAM method was able to give 65% correct answers.
Figure 9b presents the complete implemented procedure for

Table 2 Data collected for the
tool without wear in material AISI
P20

Cutting fluid: yes Wear: no

Run CC
(%)

CCX
(%)

CCZ
(%)

Pm
(kW)

RPM Cutting
fluid

vc
(m/min)

f (mm/
rot)

ap
(mm)

VBB

(mm)

1 19.62 26.37 11.00 2.16 2512 1 150 0.20 1.000 0

2 21.00 27.95 12.00 2.31 1768 1 250 0.20 1.000 0

3 19.00 25.00 11.00 2.09 1836 1 150 0.30 1.000 0

4 33.37 35.69 15.48 3.67 2899 1 250 0.30 1.000 0

5 26.94 26.00 15.00 2.93 1338 1 150 0.20 2.000 0

6 42.00 26.00 15.00 4.62 2411 1 250 0.20 2.000 0

7 52.87 26.20 17.02 4.97 1183 1 150 0.30 2.000 0

8 41.37 32.24 13.06 4.52 1683 1 250 0.30 2.000 0

9 32.94 23.00 16.00 2.47 758 1 116 0.25 1.500 0

10 45.13 27.61 11.26 4.96 3930 1 284 0.25 1.500 0

11 25.60 26.36 14.00 2.82 2357 1 200 0.17 1.500 0

12 38.00 23.00 15.00 4.18 1354 1 200 0.33 1.500 0

13 15.00 30.00 9.00 1.65 1457 1 200 0.25 0.659 0

14 42.31 29.00 18.00 4.65 2053 1 200 0.25 2.341 0

15 31.29 29.97 34.22 3.37 2096 1 200 0.25 1.500 0

16 32.61 26.39 12.61 3.59 3031 1 200 0.25 1.500 0

17 35.00 27.25 14.25 3.85 2664 1 200 0.25 1.500 0

18 32.67 29.52 17.67 3.51 1428 1 200 0.25 1.500 0

19 34.56 27.06 13.75 3.80 2110 1 200 0.25 1.500 0

20 30.33 32.70 20.65 3.32 1344 1 200 0.25 1.500 0

Table 3 Standard deviation of the results

Run Standard deviation

CC CCX CCZ

Cutting fluid: no
Wear: VBB = 0

11.70 1.48 1.82

Cutting fluid: yes
Wear: VBB = 0

9.60 3.16 5.25

Cutting fluid: no
Wear: VBB = 0.3

11.41 6.99 8.10

Cutting fluid: yes
Wear: VBB = 0.3

14.15 2.19 5.80
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the DMM-DDM-MLP OLAM method. First, the whole data
set was tested with the Student’s t test, then after separating
non-normal experimental runs, the resulting data set was treat-
ed by a self-organizing deep learning method (K-means) that
separated the two data sets.

After clustering, the two data sets were separately eval-
uated again with MLP OLAM. Data set A was found to
have 59 lines from a total of 123 lines; for training, the
MLP 3/4 of the data were used and 1/4 was used to val-
idate. Data set B had 64 lines of which 3/4 were for
training and 1/4 for validating. The MLP OLAM model
increased its efficiency to 80% in data set A and 93.8%
for data set B (Table 4).

5 Results discussion

Given the complexity of the machining process, even with a
good accuracy of 93.8%, the algorithm results “it must be

substituted”, should be considered as a recommendation only,
to serve as another support criterion in the decision of chang-
ing the tool.

According to [35], the optimal goal is that this information
be finally incorporated into the machining policy design and
process planning online through tool wear sensing methods.

Every day on the shop floor, many inserts are replaced
before reaching the end of its service life. Often, the operator
changes the insert because of the start of a new batch of parts,
or because his shift has started; generally, a conservative in-
dustrial practice according to [36] states that to avoid failures
and related consequences, tools are often replaced well before
the end of their useful lifetime, or the machining data are set
down to prevent tool wear leading an extra cost when data are
about 20–50% lower than recommended for economical
values [37].

Also [38], which implemented a naïve Bayes classifier,
states that tool wear or breakages can result in unscheduled
machine downtime in an industrial production environment,
poor quality, or scrapping of the part resulting in a significant
economic loss.

In industrial practice, the algorithms can serve as a support
for the exchange decision, the operator may be required to
make a visual inspection to confirm that the insert should be
substituted, and, if the algorithm has made an incorrect indi-
cation, this information/condition can be added to the training
database in order to improve subsequent results. In increasing
algorithm amount data, fed with new validated conditions, its
success rate tends to be better and more accurate.

The idea of the algorithm is to improve the use of the edges
and notify the operator if the algorithm understands that the
insert has reached the end of its life. Assuming a 6.2% error in
a real case, the operator will still be able to validate the

Fig. 7 Clusters centroids identified, 2D view for CC versus CCX

Fig. 6 WCSS versus number of clusters
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identification by discarding the insert or returning it to the
machine, in the case of the 6.2% that possibly will have the
wrong information.

Also, it is a reasonable practice that the operator supervises
the processes to avoid the risk of having a tool breakage due to
an incorrect algorithm, e.g., “it can continue to work” that may
scrap the machined part or damage the machine.

6 Conclusions

A great advantage of this work is the fact that it does not use
the expensive sensors or special dynamometers that are used

widely in dedicated research. It was possible to work with the
serial signals already made available by the machine through a
standard and simple internet protocol.

For the present work, two approaches were adopted in or-
der to analyze the data and create the machine learning process
for predicting the end of life of a cutting tool in a machining
process (tool wear).

Data were collected with the use of an MTConnect® mon-
itoring system in the equipment. Despite its low acquisition
frequency (1 Hz), this method proved to be reliable for the
MLP application.

For a prior analysis, the collected data set was tested with-
out any previous treatment, with an OLAM neural network.

Fig. 9 (a) Flowchart for direct
MLP OLAM neural network use.
(b) Flowchart of complete
implemented DMM-DDM-MLP
OLAM procedure

Fig. 8 Clusters centroids
identified, 3D view of
relationship
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The network was able to predict the results with a minimum of
65% reliability, which is adequate, given the number of tests
used and the variation due to the results of the inserts with
wear VBB = 0.3. The MLP OLAM was programmed consid-
ering 3/4 of the data set for training and 1/4 for validation.

In the second approach, statistical data mining methods
(DMM), Student’s t test, and data-driven methods (DDM),
known as a self-organizing deep learning method, were
employed in order to increase the success ratio of the model.
Both the DMM and DDM applied along with the MLP
OLAM neural network showed an increase in hitting the right
answers of between 80 and 93.8%.

This application can be adapted in a supervisory system to
advise the moment for tool change in industrial applications,
eliminating or reducing the need for the machine operator to
intervene in the tool change process, and thus giving the
equipment autonomy.

This model can be useful in machine monitoring using
Industry 4.0 concepts, where one of the key challenges in
machining components is to find the best moment for making
a tool change.
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