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Abstract The Robot Soccer domain has become an impor-
tant artificial intelligence test bench and a widely studied
research area. It is a domain with real, dynamic, and uncer-
tain environment, where teams of robots cooperate and face
adversarial competition. To build a RoboCup Small Size
League (SSL) team able to compete in the world champi-
onship requires multidisciplinary research in fields like ro-
botic hardware development, machine learning, multi-robot
systems, computer vision, control theory, and mechanics,
among others.

This paper intends to provide insights about the aspects
involved on the development of the RoboFEI RoboCup SSL
robot soccer team and to present the contributions produced
over its course. Among these contributions, a computer vi-
sion system employing an artificial neural network (ANN) to
recognize colors, a heuristic algorithm to recognize partially
detected objects, an implementation of the known rapidly-
exploring random trees (RRT) path planning algorithm with
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additional rules, enabling the angle of approach of the robot
to be controlled, and a layered strategy software system.

Experimental results on real robots demonstrate the high
performance of the vision system and the efficiency of the
RRT algorithm implementation. Some strategy functions are
also experimented, with empirical results showing their ef-
fectiveness.

Keywords Robotic soccer - Computer vision - Neural
networks - RRT path planning - Omnidirectional control

1 Introduction

The RoboCup—Robotic Soccer Cup—domain was pro-
posed by several researchers [17-19] in order to provide a
new long-term challenge for artificial intelligence research.
Since its introduction, the robotic soccer has become of
relevance because it possesses several characteristics also
present in other complex real problems. Examples are ro-
botic automation systems that can be seen as a group of ro-
bots in an assembly task [28, 37], group transport tasks [30],
and space missions with multiple robots [15, 38].

Soccer games between robots, as the one depicted in
Fig. 1, constitute real experimentation and testing activi-
ties for the development of intelligent, autonomous robots,
which cooperate among themselves to achieve a goal.

The development of a robot soccer team involves a wide
range of technologies, including the design of autonomous
agents, multi-agent collaboration, strategy definition, real-
time reasoning, robotics, machine learning, control theory,
computer vision, and sensor-fusion. This work provides an
overview on how these technologies are grouped, and to-
gether form a team of robots capable of playing soccer in
the RoboCup Small Size League.
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Fig. 1 Small Size League match (source: RoboCup Federation)

The paper is organized as follows: Section 2 provides
an overview of the Small Size League and shows the tasks
involved on the creation of a competitive team for this
league. Subsequent sections describe key aspects of the re-
search, namely the vision system (Sect. 3), the robotic mo-
tion control (Sect. 4), the path planner, and obstacle avoid-
ance (Sect. 5) and the strategy (Sect. 6). Section 7 presents
the experiments performed and shows the results obtained,
while the conclusions are presented in Sect. 8.

2 Overview

There are several topics to consider and disciplines required
into the task of building a RoboCup Small Size League [31]
(also called SSL for short, or F180, due to the diameter of
the robots) team able to compete in the world championship.

In the SSL, teams of 5 robots, sized up to 180 mm
diameter and 150 mm height, compete in a play field of
6.1 x 4.0 m, using global vision systems with cameras posi-
tioned over the field, at 4 m height. The human referee uses
a referee software to send game state information directly
to the computers controlling the teams, via IP network. No
other human interaction with the robots or with their con-
troller computers is allowed, while the game is running. As
there are very few restrictions about what sensors, actuators,
and communication devices a robot can have, many possi-
bilities exist, such as the use of kicking, dribbling, and ball
lifting devices. In fact, without at least these three devices,
chances of success greatly decay.

A SSL game is also very dynamic, requiring robust hard-
ware and advanced software and sensory, because several
teams have robots capable of running at speeds above 5 m/s
and kicking the ball at 10 m/s speed. These requirements
led to a number of solutions developed, therefore, we rec-
ommend the readers interested by the topic of this paper
to also read the papers describing the CMDragons [11], the
B-Smart [22], and the Skuba [35] teams.

The main topics involved in building a team for the Small
Size League are: (i) the assembly of a robust electronics cir-
cuitry and mechanical platform (not covered on this paper),
(ii) control engineering for the robot motion control, (iii) the
creation of a computer vision system, (iv) a path planning
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Fig. 2 Block diagram of the system

and obstacle avoidance (sometimes also called navigation)
system, and finally, (v) a strategy system, which is usually
the main interest of researchers working on robot soccer, and
a portion of the work that will only function provided all the
previously listed topics are operating properly.

Figure 2 shows the main modules of the RoboFEI SSL
team architecture. Vision, path planning, strategy, and ro-
botic motion control modules will be detailed in their spe-
cific sections, along this paper. The simulator and data log-
ger are discussed in this section.

The simulator engine is an important part of the software
tools needed for developing a SSL team. It must offer at least
strategy visualization/simulation and contain basic physics
simulation. Although there are existing simulators [6, 23]
featuring advanced physics engines, like ODE, in this re-
search, the Teambots [3, 4, 20], a Java simulator with basic
mechanics, was chosen as simulation engine. The last of its
software releases dates of year 2000, so its simulated world
and teams had to be modified, updating the modules to the
current game rules, to the omnidirectional robotic hardware
and to include the electronic referee commands.

Having data logging capabilities is also important, to
record the information obtained from sensors, the responses
given, and decisions made by the software modules. Both
the simulator, the data logger, and the referee can be con-
nected to the strategy modules via network sockets, shared
memory, pipes, or any other method that provides commu-
nication, as long as the method is reliable.

Finally, a recommendation is to make the software archi-
tecture as much modular as possible, segregating the main
modules in a manner that allows their independent develop-
ment and execution.
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3 Vision system

Some researchers claim that computer vision, responsible
for the recognition of the robots and ball pose, is the richest
perceptual data of a robot soccer system. The computer vi-
sion system must retrieve the pose of the objects recognized
in the scene accurately, in real time, and should cope with
luminance variation, occlusion, lens distortion, and noise.
Also, as different teams and robots are distinguished by dif-
ferent colors and shapes, the computer vision system must
recognize these colors and shapes in order to provide the
right information about the scene observed. The only rule
imposed in the SSL for vision systems is the restriction that
each team must have a color marker with a predefined area,
either yellow or blue, and the opponent team must not use
that same color.

The problem is frequently dealt with in two levels: at the
lower, there is a color and/or shape segmentation algorithm,
while at the higher level there is a classification algorithm,
responsible for receiving the lower level results and reason-
ing about it, discarding the unavoidable noise and dealing
with eventual uncertainties.

For the lower level system, as stated earlier, the obvious
choices are segmentation based on color, shape, or an hy-
brid of the two. Color segmentation is still an open issue and
worthy of consideration, as recent studies have shown (e.g.,
[34, 39]), due to difficulties in dealing effectively with lu-
minance variation and color calibration. To avoid pure color
segmentation, in previous work [26] by some of the authors,
a shape-based system that did not use color information for
object segmentation, only for object distinction, was created.
As a result of this shape-based approach, the system proved
to be fast and more robust to luminance variation. Basically,
the system consisted of subtracting the static background of
the image, leaving only foreground, then finding circles in
the image and color classifying the pixels inside these cir-
cles. However, color calibration still required expertise and
had limitations when under uneven luminance conditions.
To solve the color classification issue, in a subsequent work
by the authors [14], an Artificial Neural Network (ANN)
was introduced to classify the colors automatically and in-
crease the accuracy. The result was a system with fast seg-
mentation and accurate color classification, with the shape-
based algorithm finding the circles and eliminating most of
the noise, while the neural network could recognize colors
even under changing or uneven luminance.

However, the vision system described on the previous
paragraphs, that served very well for the IEEE Very Small
League, failed in the RoboCup SSL, where the camera is
posted at 4 m height and color markers of 5 cm? have to
be found on the field. Distortions caused by the high speed
of the robots and ball, besides the size of only a few pixels

of the objects, rendered the shape-based segmentation invi-
able. Under these conditions, circles became elliptical ob-
jects at best, more often not even forming defined shapes.
High speed, high resolution cameras helped, but did not
solve the problem.

A new vision system had to be introduced, with the lower
level segmentation algorithm that could cope with sudden
shape changes, whilst keeping computational costs low. This
new vision system is based on the CMVision system [10],
based in color classification and blob coloring creation. The
differences to the CM Vision are the use of an artificial neural
network color classifier and a heuristic algorithm to resolve
uncertainties in the object detection.

The coming subsections describe the key aspects of the
solution: the artificial neural network used to perform the
color segmentation, the simple method to overcome its high
computational cost, the run length encoding algorithm em-
ployed to create the blob objects, and the heuristic based
algorithm that selects best candidates, among the list of po-
tential objects, and provides tracking capabilities.

Experimental results of the neural network algorithm for
color recognition will be presented in Sect. 7.1.

3.1 Artificial neural networks to recognize colors

Artificial Neural Networks, particularly Multilayer Percep-
tron (MLP) networks, have been applied to a wide range
of problems such as pattern recognition and robot control
strategies, noticeably for their capability of approximating
non-linear functions, by learning from input-output example
pairs, and generalization (see [29]). MLP neural networks
can learn from complex and noisy training sets without the
need to explicitly define the function to be approximated,
which is usually multi-variable, non-linear, or unknown. In
addition, they also have the capability to generalize, retriev-
ing correct outputs even when the input data is not present
in the training set. Generalization also allows the network to
be trained with a small quantity of samples.

One aspect that makes neural networks attractive for use
in the color classification problem is their ability to repre-
sent non-linear, discontinuous functions. Because of lumi-
nance variations, the representation of a given color class,
be it in the RGB or HSV domains (see [13] for a descrip-
tion of these color domains), often occupies a variable num-
ber of discontinuous portions of the space. Such discontinu-
ities cannot be represented in a manually-defined threshold-
ing system, unless it has one set of thresholds for each of
these discontinuous portions. Nevertheless, creating multi-
ple thresholds increases considerably the expertise and time
required to calibrate the colors, should the task be manually
performed by the operator. With neural networks, these dis-
continuous representations can be quickly learned from the
training set, without the need of operator’s expertise, making
them a more suitable solution for the task.
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Fig.3 The MLP neural
network implemented to
recognize colors

Similar to [33], the MLP neural network employed in the
vision system, shown in Fig. 3, is composed of three lay-
ers. The hidden and output layers consist of neurons acti-
vated by sigmoid functions, and training is performed using
the well-known back-propagation algorithm. The input layer
has three inputs, same dimension of the HSV space, while
the output layer has seven computing units: six outputs rep-
resent each of the colors of interest (orange, yellow, blue,
green, pink, and cyan) and one output represents the back-
ground. Regarding the hidden layer size, after some iterative
trials, the best accuracy was found to be around 20 neurons.
As a result, the topology of the MLP neural network was set
as 3 inputs, 20 neurons in the hidden layer, and 7 neurons in
the output.

Neural networks, however, have a relatively high com-
putational cost, due to the fact that each new input sample
requires a new calculation of the neuron matrices, which
cannot be computed a priori. Fortunately, to overcome this
limitation, a very simple technique can be applied: Instead
of querying the neural network during the game, a tri-
dimensional lookup table is created and preloaded with the
output of the neural network to all the possible values of the
HSV space (360 x 100 x 100 memory positions).

3.2 Blob creation using the RLE algorithm

Once the image is completely classified with the colors of
interest, a process needs to transform the individually clas-
sified pixels into connected regions that can be treated as ob-
jects, the so-called blobs, because they do not have a known
shape. This is potentially an expensive operation that can
affect real-time performance. The CMVision [10] is one of
several existing libraries that solves this problem with good
performance. In fact, it could be used as a full vision sys-
tem, but the course adopted in this work was to use only
portions of it, merging them with other blocks, to achieve
superior performance. Full details about the CMVision can
be found in [10], therefore, this paper only details CMVi-
sion’s Run Length Encoding (RLE) algorithm and the tree-
based structure used into it. Run length encoding is a sim-
ple compression algorithm, in which long runs of data (long
sequences of the same data value) are stored as a single
data value and count. In this specific case, the sequences
are the segmentation values of each pixel (computed using
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Fig. 4 Three examples of the Butterfly pattern style

the aforementioned neural network). The blob creation al-
gorithm applies the RLE on each row of the segmented im-
age, so at the end of its execution, the result is an image in
which pixels are grouped in rows of connected regions. Then
it groups connected regions of same data value belonging to
adjacent rows, scanning the image vertically. CMVision ac-
complishes these region connections among rows efficiently,
because the regions are stored in a tree-based data structure,
allowing an union-find algorithm to group them quickly.

At the end of the algorithm, when it has finished with the
region connections (blobs), it extracts the region information
such as bounding box, centroid, and area, necessary for the
analysis of the pattern recognition and heuristic algorithms.

3.3 Vision reasoning algorithm

Although the vision system has already detected all the
blobs and has information about their color, position, and
size, the object is still not detected, just its components. At
this point, the pattern detection phase, responsible for actu-
ally identifying each unique object, starts. The algorithm is
designed to search for groups of blobs that form predefined
patterns, unique to each robot in the field, such as the one
depicted in Fig. 4, the butterfly [9].

The butterfly is a pattern that became very popular among
the SSL teams. It consists of 5 circular patches: the central
indicates to what team (yellow or blue) the robot belongs.
The other four are used to identify each of the twelve unique
combinations, using only 2 different colors. To identify the
orientation of the robot on the plane, the butterfly pattern
uses different distances between the two patches on the front
and the two patches on the rear of the robot.

However, there may still exist reasonable amounts of
noise and uncertainty in the image, resulting from noise it-
self, partial occlusions, errors in the segmentation and clas-
sification processes, or camera pose discrepancies. For this
reason, the pattern matching has been enhanced with heuris-
tics, like the minimum change concept and a best matching
algorithm.

The minimum change concept states that robots and ball
displacements are constrained by their physics and the vi-
sion samples at a fixed interval, so it shall be a reasonable
assumption that, in case of multiple candidates for a given
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object, the closer the candidate is to the object’s previous lo-
cation the more likely it is to be the correct one. This heuris-
tic is modeled as shown in (1), a uni-dimensional Gaussian
kernel. The kernel is centered on the previous location of the
object, with variance given by a cache of the last second of
the object’s displacement data.

1 (d— ud)2>
h=——exp| ——+— (D)
V2moy p( 205
where:

h is the normalized Gaussian kernel value;

d is the displacement between the current and last de-
tected positions of the object;

g is the average displacement measures;

o4 and 03 are the standard deviation and variance, respec-
tively.

The best matching algorithm, set for the pattern type
used, is then executed, returning the likelihood the groups
of blobs found have to be objects. The best matching al-
gorithm mimics the pattern detection operation, but seeking
for other groups of blobs that might form robots. An exam-
ple is a butterfly style object where one of the circles was
not detected. In this case, the algorithm would detect neigh-
boring circles that do not form any known pattern, but match
the distance parameters among themselves. These neighbor-
ing circles have a non-zero probability, in the form (object |
blobsfound), of representing an object. In the current algo-
rithm implementation, the probability values of incomplete
detections actually belonging to objects were manually en-
tered a priori. Automatically adjusting these values though
would be desirable.

The two heuristics shown are weighted summed to pro-
duce the final likelihood that groups of blobs have for being
considered objects. Then the groups with larger sum results
are selected as objects. Presently, the weights are empirically
chosen, but their automation is planned for the near future.

4 Omnidirectional drive control

Most teams competing on the SSL League today [16, 40] use
robots designed using omnidirectional drive. This drive sys-
tem allows the robot to translate between any two points on
the plane without having to rotate its body toward the goal
direction first, e.g., like a car. To achieve this, special wheels
are employed, assembled with smaller wheels attached to
the periphery of the main one. These smaller wheels are as-
sembled in a position that allows them to rotate frictionless
in a direction other than the main wheel, connected to the
motor axis. There are a number of different omnidirectional
wheels, like the Swedish or Mecanum wheels, not covered
in this section, as they are unusual in Small Size robots. The

wheel type usually chosen for is the one where the small
wheels are mounted with the rotation axis perpendicular to
the main wheel’s axis. A mechanical design of the robots,
showing the omnidirectional wheels and their disposition, is
shown in Fig. 5.

Any robot with three or more wheels can be designed as
omnidirectional drive, however, most of the robots built to
compete on the SSL have four. There are two main reasons
favoring the use of four and not three wheels: (i) more mo-
tors mean more torque, therefore, more acceleration, what is
highly desirable on a game where robots can cross the field
in little more than one second. (ii) With three wheels, move-
ment to certain directions has significantly less speed and ac-
celeration than others, what leads to more constraints when
positioning the wheels, to make sure the robot drives fast
enough at least when driving forwards. These constraints
become even worse to deal when one recalls that wheels are
not the only parts assembled on the periphery of the robot.
The kicking, dribbling, and passing devices also need to be
positioned. Four wheels alleviate these constraints.

Once the number of wheels is chosen, their mounting po-
sition needs to be defined, so the movement matrices can
be calculated. For a more in-depth understanding about the
construction and control of omnidirectional drive robots, the
reading of [32] is recommended. In this section, the main
equations and a methodology to control the robot’s move-
ment are presented.

When building an omnidirectional control, the goal is to
control the robot’s translational speeds on the plane, vy, vy
and the rotational (angular) speed w, while having as actua-
tors the motor forces f1, f2, f3, and f4. To transform forces
into motor speeds, first the robot must be described in terms
of its force matrix C, velocity coupling matrix D, mass M,
mass distribution «, and radius R. The force and velocity
coupling matrices depend on the wheels disposition, as their
respective equations, (2) and (3), show. The angles ¢, of
these matrices are shown in Fig. 5(right) and are measured
in relation to the horizontal axis of their quadrants.

) 1
(ax, ay, Ri)' = —-C(f1, £, f3, f2)" )
T _ T
(V1,v2,v3,V4)" = D(vy, vy, Rw) 3
where:
—sing; —singy  singz  singy
C=| cosp; —cosgy —cosS@3 COSQ4
1 1 1 1
o a a a
—sing;  cosg; 1
D— —singy —cosgy 1
| sings —cosgy 1
sin g cosps 1

Having all the terms, the matrices C and D are assem-
bled, and control loops can be used to control the translation
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Fig. 5 (Left) Mechanical view
of the robot’s base. (Right)
Wheel disposition diagram

Fig. 6 Block diagram of the
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and rotation of the robot. The feedback for these loops can
be odometry measures, when the control loops are embed-
ded into the robot, or the vision system, when the control
is executed on the remote computer. To the knowledge of
the authors, no team tried to transmit odometry information
back to the computer via radio. Some very successful teams
in SSL, such as the Skuba team [35], use vision as feedback,
and force-torque controllers for the wheels. Others embed
the control into the robot, to avoid having to deal with the
latency of the vision loop.

The control system implemented in the RoboFEI team,
shown in Fig. 6, is of the embedded type, and uses wheel
odometry as feedback sensors. Individual PI controllers are
present in each wheel, responsible for making them to ro-
tate at the commanded speed, and interleaved with them,
are two PID controllers responsible for the robot motion.

@ Springer

One of these controllers is the translational controller, re-
sponsible for the translating the robot on the plane, having
as input the velocities v, and v, and the accelerations ay
and ay. The other controller is the rotational PID controller,
which controls the rotation of the robot on its axis, having
as input w. Both controllers use the same (3) to produce the
output speeds of each wheel, vy, v2, v3, and v4, but each of
them operate on different terms. Because the equation can
be split in sums of translational (vx and vy) and rotational
(w) terms, it is possible to use separate controllers, with
different parameters, for these two portions of the move-
ment.

The odometry information collected from the wheels is
fed into the pseudo-inverse (non-square matrices do not have
inverses) of the D matrix, and the output is then used as
feedback for the translational and rotational controllers.
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5 Path planning and obstacle avoidance

Path planning is one of the challenging subjects in most mo-
bile robotic applications. As such, many different solutions
were developed and applied with good practical results, but
none being yet considered to be the optimal solution. Path
planning can be, in a simplistic manner, reduced to the prob-
lem of how to find an admissible path from a starting to an
ending point on the space, with admissible meaning (i) a
collision-free path between start and end, as well as (ii) a
path the robot can execute, given its kinematics constraints.
Solutions for the first of these two items were largely stud-
ied over the last two or three decades, with solutions ranging
from behavioral systems [1] and potential fields to computer
geometry methods, like Cell Decomposition and RoadMap
methods (i.e., Voronoi diagrams, Visibility graphs and re-
lated). Latombe [21] provides a good exposition of these
aforementioned techniques applied to robotic motion. More
recently, methods that employ sampling algorithms became
popular, such as the Probabilistic RoadMaps (PRMs) [25]
and the Rapidly-Exploring Random Trees (RRTs) [8, 12].

Solutions to the second part of the problem, whether the
robot can actually accomplish the generated path, started
with the utilization of the robot’s kinematic model during
the generation of the path, to restrict the path segments cre-
ated, and then evolved to solutions that consider both the
dynamics and the kinematics of the robots.

Regarding the ability to accomplish the generated path,
having omnidirectional drive robots presents an advantage:
the capability to move to any direction without having to ro-
tate its front, and with nearly the same speed, allowing much
less restrictions on the trajectories the robot can execute.
Therefore, given the robot can execute most of the paths
traced, the issue becomes to efficiently generate a collision-
free path. The remaining part of this section presents a path
planner that is capable of such.

The implemented path planner has a RRT [24] in its base,
due specially to (i) its capacity to efficiently explore large
state spaces using randomization and the probabilistic com-
pleteness offered (ii) the lookahead feature of the algorithm
and (iii) its easy extension if new constraints or heuristics
are deemed necessary.

The efficient exploration of a large state space via ran-
domization provides a sound guarantee of the theoretical
probabilistic completeness, the assurance of a non zero
probability of finding a path if one exists. Must be no-
ticed though that the term theoretical is left in evidence be-
cause this statement only holds true if the tree is allowed to
grow for infinite iterations. In practice, however, the num-
ber of cases it could not find a path was very reduced. The
lookahead feature has a considerable advantage over reac-
tive based systems such as the potential fields, helping elim-
inate most of the sub-optimal paths and local minima, be-
cause the tree generated finds a path between start and end

is the vast majority of the cases. And last, the easiness of
the addition of constraints or heuristics comes from the in-
cremental nature of the algorithm. One can add more rules
to allow or not the expansion of the tree to occur toward a
certain state or region of the space without having to disas-
semble the algorithm logic.

5.1 KD-trees as RRT structures

The implementation here described is based on the Rapidly-
Exploring Random Tree (RRT) algorithm proposed on [2].
The aforementioned study states that, because RRTs grow
by selecting a new point on the plane and expanding to-
ward it from the nearest existing node, at each iteration,
they are heavily dependent on nearest neighbor searching.
Therefore, the usage of a data structure capable of improv-
ing this search would improve the whole RRT algorithm
significantly. KD-Trees (short for k-dimensional trees) are
data structures created exactly to optimize nearest neigh-
bor searching in k-dimensional orthogonal planes, by recur-
sively subdividing a set of points based on alternating axis-
aligned hyperplanes. In short, it can be said the KD-tree sorts
the set of k-dimensional points in all its dimensions by sort-
ing each level of the tree in one axis. The classical KD-tree
uses O(d logn) construction time, and answers queries' in
On!~1/4) where n is the number of k-dimensional nodes
in the tree and d the dimension. There are more advanced
versions of the nearest neighbor algorithm using KD-Trees,
such as the approximated nearest neighbor search, which
could be utilized in future implementations, but as of now
they are not used.

5.2 Implementation details

As stated in Sect. 5.1, the algorithm is based on the RRT
with KD-Trees from [2], the ERRT algorithm developed by
[8] (also a comprehensive reference for those seeking a RRT
path planner implementation guide), which adds concepts
such as the straight line segment replacement and the plan-
ner ‘memory’ concept with the use of a cache of the pre-
viously found path, called waypoint cache and algorithms
to include preferred path heuristics and set the angle of ap-
proach. Let p be the probability of the RRT tree to be ex-
panded toward the goal, and g be the probability of the tree
being expanded to a point belonging to the previous suc-
cessfully generated path (this probability is suppressed until
the first successful path is generated). Let also / be the max-
imum expansion length, which effectively gives the maxi-
mum size of the tree’s path segments. The shorter this length
[ is, the more precision the path would have, but it would

'For orthogonal range queries.
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Fig. 7 RRT tree examples with different probabilities toward goal,
without waypoint cache. (a) has 20% probability, (b) has 35%, and
(¢) has 50%

also take more steps to reach the goal. Figure 7 shows ex-
amples of different probabilities p set.

Having defined these values, the initial RRT tree (stored
in a KD-Tree) is created, containing only the starting point,
then extended iteratively (if obstacle avoidance rules de-
scribed next allow) as follows: With probability p the tree is
extended toward the goal; With probability ¢ it is expanded
toward a point from the previous path, stored in the way-
point cache; With probability 1 — p — ¢ it is expanded to-
ward a randomly selected point on the plane. All the expan-
sion lengths are limited by the length value /. The iterations
end when the goal point is reached or when the number of
iterations has exceeded its maximum, a limitation needed to
bound the execution time in case of uncommon situations
such as a collision-free path being inexistent. Once finished,
as described in [8], the path is replaced by the minimum
number of straight lines that can connect the start and end
points without intersecting obstacles. Also, at this point, the
waypoint cache is updated with a constant number of points
(the implementation described uses between 50 and 100)
taken from the path found. This cache array will be used
as memory of the algorithm on the next operation cycle with
q probability of being selected, thus avoiding oscillations
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Fig. 8 Example of the full implementation of our path planning al-
gorithm. The line segments shows the RRT and circles are obstacles.
The circle segment around the ending point is the angle of approach
constraint. In bold, the final chosen path, starting from the point on the
right

between different paths that might arise due to the random
nature of the search and reducing the number of nodes ex-
panded.

Obstacle avoidance and other constraints are imple-
mented in a simple manner: During the tree expansion phase
described in the previous paragraph, after expanding the tree
toward a given point and before to actually store it in the
tree, the new node is tested against a rule or set of rules to
determine if the tree should be expanded or the expansion
canceled. This is called the expansion metric of the tree.

The current implementation uses three sets of metrics as
expansion metric of the tree. The first rule checks if the node
intersects with obstacles. Each robot is set, regardless of
teammate or opponent, as a circular obstacle slightly bigger
than its actual size. If an intersection of the node with the
area where an obstacle lies is found, the node is discarded
from the tree. If not, it is kept. The flexible nature of the al-
gorithm allows not only the robots to be set as obstacles but
also the goal areas, as these are positions forbidden by the
game rules, or any other region of the field desired.

The second rule exists to set the angle which the robot
approaches the ending point to the desired by the strategy
layer, an item that many path planners do not treat. It is not
desirable, for example, that a robot going to the ball on the
defensive field accidentally hits the ball in the direction of
its own goal, or yet that an attacking robot arrives at the ball
in a position in between the ball and the opponent’s goal.
To create a path that conforms to the angle of approach re-
quirement, a circular virtual obstacle centered on the ending
point is created, with a 20° width circle segment and vertex
at the desired angle removed. This effectively forces the path
planner to create a path that reaches the ending point pass-
ing through this 20° opening. The radius of this obstacle-like
constraint is set at around half of the size of a robot. Figure 8
shows an example of the algorithm’s result.
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On top of these, a heuristic map is also created. This map,
controlled by the strategy layer, can modify the probability
given areas of the field have of being randomly selected for
tree expansion, effectively biasing the robots to avoid or fa-
vor portions of the field, when creating paths. More details
on the heuristic map can be found in Sect. 6.

6 Strategy

Building multi-agent systems in a layered architecture with
different levels of abstraction is a popular approach (see
[27]) in complex systems. Examples of this kind of lay-
ered architecture with good results can also be found in SSL
teams, such as [5, 36], and the STP [7], which is likely the
most famous of these architectures.

The STP divides the strategy system in three layers:
skills, tactics and plays. Skills are short term actions that
the robots can do individually, like shooting to goal or pass-
ing. Tactics are state machines that encapsulate long term
behaviors that the robot must execute, such as going to the
attack field, receiving the ball from the teammate and shoot-
ing to the goal. Plays are collective state machines, involv-
ing a number of robots. The limitation of the STP, according
to its authors, lie in the difficulty to change existing or add
new tactics, and plays, because the criteria used to select be-
tween state machines and the hard coded states within them
are very tightly coupled.

The strategy architecture presented in this paper, like the
STP, is composed of three layers, named Primitives, Skills,
and Roles. The Primitives and Skills are similar to the Skills
and Tactics of the STP, respectively. The difference is in the
Roles layer, which allows each robot to decide by himself,
without the need for collective state machines.

The lowest layer, the Primitives layer, is composed by
actions that mostly involve directly activating or deactivat-
ing a hardware module such as to kick the ball with a given
strength, activate the dribbling device, rotate or move to a
position.?

On top of the primitive layer comes the Skills layer. Skills
are also short duration actions but involving use of one or
more primitives and additional computation, such as angle
calculations, speed estimation or forecasting of objects’ po-
sitions, measurement of a primitive task’s completion, and
verification of obstacles displacement. On this layer, as few
skills as possible where created, while still maintaining a set
of skills that would represent all the basic skills required in a
robot soccer game like shooting the ball to the goal (aiming
where to shoot), passing the ball to a teammate rolling it on

2 Actually, moving to a position is a special case of a primitive with
underlying complex logic. It calls the path planning system to perform
obstacle avoidance.

Table 1 Roles and its Skill sets

Role Skill Set

Attacker DribleToPosition(x, y)
ShootToGoal()
PassTo_floor()
PassTo_lift()

ReceivePass()

Defender DeltaDefense()
TackleBall()
PassTo_floor()

PassTo_lift()

MidFielder DribleToPosition(x, y)
ShootToGoal()
TackleBall()
PassTo_floor()
PassTo_lift()

ReceivePass()

DefendGoal()
PassTo_floor()
PassTo_lift()

GoalKeeper

the floor or lifting it on the air, dribbling, defending the goal
line, or tackling the ball (moving toward the ball and kicking
itaway). The skills as well as the roles which group them are
shown in Table 1. Before entering the description of the role
layer, the structure of a skill is presented, showing in more
details an offensive skill, the shoot to goal algorithm, and a
defensive skill, the Delta defense.

ShootToGoal() has the purpose of selecting the best an-
gle to shoot to the goal, evaluating obstacles and opponent’s
goalkeeper positions, aligning the robot to that angle, and
activating its kicking device. The function core is the aim-
ing algorithm, shown in Algorithm 1. The aiming algorithm
starts by defining a triangle between the ball and the goal
limits and retrieving the angle of the ball’s vertex. Then it
partitions this triangle in smaller triangles, also with vertex
on the ball, using the line segments with a point on the ver-
tex and tangential to an obstacle, marking also if that angle
is composed by the upper or lower (in relation to the x axis)
line tangential to the circle of the obstacle. Angles of lines
above are classified as blockedStart, while the ones below
are called blockedEnd. The next step is to sort the vector A
of these angles and scan it, as follows: every angle range be-
tween a blockedEnd and a blockedStart type is selected, as
these are angle ranges where there is no obstacle. The widest
of these ranges is selected then, as the best angle. If there is
no range available, the robot randomly selects either the left
or rightmost side of the goal and kicks, aiming at that side.

DeltaDefense(), a skill with the objective of forming a
line in front of the goalkeeper, to help protect the goal. It
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is named Delta defense because it forms a triangle between
the goalkeeper and the two defenders, when both of them
execute the function at same time. The defender positions
itself just in front of the defense area, slightly to the left or
slightly to the right in relation to where the goalkeeper is,
while also looking for the other defender, to make sure they
are not trying to occupy the same position.

Once the skills are in place, they are employed by the
Roles layer, that creates different roles using combinations
of skills and logic to coordinate the execution of these skills
accordingly. The current implementation has four types of
roles, called goalkeeper, defender, midfielder, and attacker.

To exemplify how roles can make different uses of skills,
consider the behaviors of the attacker and defender roles in
relation to the skill passTo_floor(), a function that passes the
ball rolling on the floor to the teammate with better chance
to carry it or to shoot. The logic of the attacker is to create a
probability gridmap of the field area between itself and the
opponent’s goal and to fill the probabilities of this gridmap.
The function used to determine the values of these proba-
bilities calculates a weighted sum of the chances to fail in
a shoot to goal, based on angle, proximity, and obstacles.
The attacker’s logic also continuously searches for the best
teammate to receive the ball, based on their proximity to op-
ponents, angle to kick to goal and angle between the ball
and the goal. On the other hand, the defender role’s gridmap
is filled with the weighted sum of the chances to success-
fully pass the ball to a teammate, favoring the closest to the
opponent’s goal, and the probability of being tackled by an
opponent.

There are major advantages in segmenting the strategy
system into layers, such as the capability to use simple ac-
tions in lower level layers as building blocks for the higher
level actions, and to use these building blocks into many
higher level functions, what effectively makes it a modular
system.

Results of the application of this layered strategy, ac-
quired in game scenarios, can be seen in the experiments
and results section (Sect. 7.3).

7 Experiments and results

This section shows the experiments performed with the dif-
ferent modules of the system, and respective results. All
tests were executed on the real robots, operating within the
game environment. The modules were also used during the
RoboCup 2009 competition, with results matching the ones
presented ahead.

7.1 Vision experiment

The purpose of the vision algorithm experiment was to val-
idate the contribution presented in this work, of an accu-
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Algorithm 1 AimToGoal()
Require: p and ¢—structs with two angles; A—a vector
with angles and their types.
: ¢ < Get Angle Range between ball and the goal limits
: for each robot not behind x coordinate of ball do
p < GetAngleBlocked(ball.coords, robot.coords, r)
if p.blockedStart within ¢ then
add p.blockedStart to A
end if
if p.end within ¢ then
add p.blockedEnd to A
end if
10: end for
11: add ¢.blockedStart to A, swapping its type
12: add ¢.blockedEnd to A, swapping its type
13: Sort(A)
14: for i < 1to Length(A) do
15:  if A[i — 1l.type = blockedEnd and Ali].type =

R e AN S e

blockedStart then
16: add angle range from A[i — 1].blockedEnd to
Ali].blockedStart to OpenAngles
17:  end if
18: end for

19: return max(OpenAngles)

rate color calibration method, capable of correctly classify-
ing pixels even under changing luminance and trained with
noisy samples. Position and orientation accuracy results are
believed to be similar to the work of [10], therefore read-
ers interested in validating positioning accuracy are recom-
mended to follow the methodology there described.

In the vision system experiment, the neural algorithm was
calibrated with 70 samples from the live camera image, 35
of these obtained at a luminance level of 1000 lux and 35
obtained at 600 lux. The training algorithm and parameters
used are the same as described in Sect. 3.1. The threshold-
ing algorithm, used for comparison purposes, was calibrated
with images taken at 6 different luminance levels (varying
from 400 to 1,600 lux). After both algorithms were cali-
brated, the robots were set to wander across the field, mov-
ing at their normal speed to points on the field randomly
chosen by the computer. Every time a robot reached its des-
tination point or stopped moving for more than 3 seconds,
a new point was chosen. A counter summed the number of
times each robot was correctly identified in each of the algo-
rithms, in a cycle of 4,000 frames, and the process was re-
peated for 4 luminance levels. Figure 9 shows a worst case
detection count of the robot detected the lesser number of
times during each cycle of 4,000 frames.

The results show that the neural algorithm is extremely
robust to luminance variation, as well as to noise. On the
contrary, the thresholding system is highly vulnerable to
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Fig. 9 Percentage of frames 99.35%
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Comparison between the neural
network and manual

78.45% 79.85%

76.45%

thresholding methods under 75.00% {——
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56.00%

50.00% +—

25.00% +—
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0.00%
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noise. It is important to note also that, to obtain a calibration
for the thresholding algorithm that could be used in the test,
more than 45 minutes where spent in trials, for even when
the results in the test images were satisfactory, after the ro-
bots started to move the results were found to be poor. The
neural network calibration did not take more than 3 minutes
and had to be executed only one time.

7.2 Path planner experiments

To evaluate the performance of the path planning algorithm,
two test sets were performed in a real game scenario, as
shown in Fig. 10, where the robot had to navigate from a
starting to an ending point, passing through a portion of the
field with several obstacles. In both tests, the path planner
algorithm was executed at the same frequency it runs in real
games, 60 times per second.

The first test was to verify the planning times during the
course, while testing the algorithm in the following varia-
tions: (i) with the use of the waypoint cache, (ii) without the
cache, and (iii) with the waypoint cache and using the angle
of approach. The probability p toward the goal was set to
20%, while the waypoint probability g was set to 70%. The
maximum length of a node was the size of half robot. The
results of each of these algorithm variations, over 15 inde-
pendent trials, are shown in Fig. 11. The objective of this
test was to confirm the performance, as well as to observe
if the waycache and the angle of approach would consider-
ably increase the computational time required. During this
test execution, the largest tree recorded had 1,564 nodes.

The second test was performed using the same scenario,
but this time fixing all the parameters and changing only
the probability p toward the goal (and reducing the same
percentage from the waypoint probability g). The graph on

800 1200 1600

Lux

@ Neural O Threshold

Fig. 10 Path planning test. Superimposed images show the trace of
the moving robot, from its origin on the left to the goal on the right.
The white lines show the RRT tree on the first iteration. The red line
shows the final path given by the path planning algorithm, also on the
first iteration

Fig. 12 shows a set of trials with 20% probability toward
goal and 70% toward waypoint and a set of trials with 35%
probability toward goal and 55% toward waypoint. The re-
sults shown are of 15 independent trials. As the probability
toward the goal increases, the time spent on the planning
decreases, because less exploration of the state space is per-
formed. Test results show that there is no unique optimal
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value for the probabilities p and ¢, as the exploration ver-
sus smaller expansion is a trade-off dependent on how often
the moving obstacles position themselves, relative to each
other. An option, explored in some RRT implementations, is
the use of adaptive algorithms to adjust these values, based
on empirical game tests.

7.3 Strategy experiments

To test the strategy system’s main offensive and defensive
functions, some game scenarios were constructed. The first
test consists in to randomly placing the ball in the offen-
sive field and let the attacker shoot it to the goal, while the
goalkeeper will try to defend the ball. The attacker is exe-
cuting the ShootToGoal skill while the defense executes the
DeltaDefense. The results of this test were compared with
a scenario where the same offensive skill played against a
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basic defense, composed of two robots that position them-
selves in front of the defensive area, between the initial po-
sition of the ball and the center of the goal, and then stay put,
not coordinating movements with the goalkeeper. Thirty in-
dependent runs of 100 trials each were run, and the results
averaged. These results appear in Table 2, and show an im-
provement over the basic defense. The tests also show that
algorithms such as ShootToGoal, where a single robot tries
to aim and shoot, have limited effectiveness against even
simple defensive schemes. Team plays, where robots pass
the ball among themselves and then shoot, are good candi-
dates to overcome this issue.

8 Conclusions and future work

The purpose of this paper was to provide an overview about
the requirements and challenges involved in the creation of



J Braz Comput Soc (2011) 17: 69-82

81

Table 2 Delta defense performance

Delta Defense Basic Defense
Defenses 50.2% 37.0%
Balls out 34.0% 13.4%
Goals scored 15.8% 48.6%

a team capable of competing in the RoboCup SSL league.
The results of the experiments demonstrate the performance
of the main modules of the system, with good results in the
computer vision area, where a contribution is made, a new
method for color calibration based on a well-known neural
network algorithm. An extension of an algorithm provenly
capable for the difficult problem of mobile robots path plan-
ning is also presented, as well as a sketch of a simple Al
system. In future work, we plan to extend the usage of Al
techniques, especially to the layered architecture of roles,
whilst building more skills, and thus expanding the role pos-
sibilities.
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