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What sort of people live about here?”

“In that direction,” the Cat said, waving its right paw round, “lives a Hatter: and in that

direction,” waving the other paw, “lives a March Hare. Visit either you like: they’re both mad.”

“But I don’t want to go among mad people,” Alice remarked.

“Oh, you can’t help that,” said the Cat: “we’re all mad here. I’m mad. You’re mad.”

“How do you know I’m mad?” said Alice.

“You must be,” said the Cat, “or you wouldn’t have come here.

Lewis Carroll/ Charles Lutwidge Dodgson (1832–1898)



RESUMO

O objetivo deste projeto é a investigação dos formalismos de raciocínio espacial existentes

para sistemas colaborativos, a fim de interpretar uma cena a partir de múltiplos pontos de vista

em tarefas de mapeamento de ambientes. Motivadas pela crescente necessidade de interação

entre humanos e robôs, as teorias do Raciocínio Espacial Qualitativo (QSR) são integradas em

um único formalismo para modelar as percepções de veículos aéreos não tripulados (VANTs)

operados remotamente. As teorias qualitativas possibilitam a troca de informações entre humanos

e agentes robóticos, para que possam realizar tarefas em missões colaborativas envolvendo

objetivos de busca e monitoramento na agricultura, desastres naturais, tarefas de busca e resgate,

entre outros. A combinação das teorias espaciais estudadas levou ao desenvolvimento de dois

formalismos: o Cálculo de Intervalo LH e o Raciocínio Espacial Colaborativo. O Cálculo de

Intervalo LH consiste na combinação do Cálculo de Conexões de Regiões com a Algebra de

Intervalos de Allen para descrever as relações entre dois objetos de um ponto de vista aéreo. O

Raciocínio Espacial Colaborativo combina o Cálculo de Direção Cardinal com o Cálculo do

Intervalo LH para a tarefa de mapeamento do ambiente onde os agentes têm uma visão parcial da

cena. VANTs equipados com câmeras são a plataforma utilizada para testar o formalismo deste

projeto, captando imagens com uma visão parcial do ambiente, de diferentes direções de voo. Os

resultados obtidos mostraram que os dois formalismos propostos tiveram sucesso na tarefa de

mapeamento do ambiente.

Palavras-chave: Raciocínio Espacial Colaborativo. Raciocínio Espacial Qualitativo. Mapeamento

de Ambientes. Veículos Aéreos Não Tripulados.



ABSTRACT

The goal of this project is the investigation of existing spatial reasoning formalism for

collaborative systems, in order to interpret a scene from multiple viewpoints in the task of

environment mapping. Motivated by the increasing need of interaction between humans and

robots, Qualitative Spatial Reasoning (QSR) theories are integrated into a single formalism for

modeling the perceptions of remotely operated Unmanned Aircraft Vehicles (UAV). Qualitative

theories enables the exchange of information between humans and robotic agents, so that they

can perform tasks in collaborative missions involving searching and monitoring objectives in

agriculture, natural disasters, searching and rescue tasks, among others. The combination of the

studied spatial theories led to the development of two formalism: the LH Interval Calculus and

the Collaborative Spatial reasoning. LH Interval Calculus consists in the combination of Region

Connection Calculus and Allen’s Interval Algebra to describe the relations of two objects from an

aerial point of view. Collaborative Spatial Reasoning combines the Cardinal Direction Calculus

with LH Interval Calculus to the task of environment mapping where agents have a partial view

of the scene. UAVs equipped with cameras are the platform used to test the formalism of this

project, capturing images with a partial view of the environment, from different directions of

flight. The results obtained showed that the two formalism proposed were successful in the task

of mapping the environment.

Keywords: Collaborative Spatial Reasoning. Qualitative Spatial Reasoning. Allen’s Interval

Algebra. Environment Mapping. Unmanned Aerial Vehicles.
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1 INTRODUCTION

The natural human characteristic of exploring the environment around himself led to the

continuous development and improvement in the art of navigation, to know where we are in

relation to a previously known reference point, whether at sea, land or air. Navigation systems

can serve as auxiliaries in operations performed by humans in remotely controlled vehicles,

or even act as the main operator, in the case of robots, cars, submarines or unmanned aircraft

equipped with autonomous systems. In this way, it is possible to carry out missions where the

risk of vehicle loss is great, such as in wars, during the monitoring of natural disasters, or even

when the mission can last a long time, for example, the recognition of certain environment for

more than 24 hours, making it impossible for a person on board to perform such a task with the

expected quality.

The increasing interaction between people and intelligent systems, leads to a high demand

of reliable representations of human knowledge. Remote-controlled robots are becoming a reality

in the world, and its applications vary from delivery systems to complex surgeries. Specific

aspects of interaction as cooperation and collaboration raises the ability of heterogeneous teams

composed by humans and different kinds of robots, or with different resources, to solve difficult

problems that rely on real time data analysis and quick responses.

To contribute to the evolution of existing navigation systems, this project is focused on

the improvement of a system applied to Unmanned Aerial Vehicles (UAVs). Currently, UAVs are

being intensively used for military protection purposes, recognizing battlefields or the location of

the opposing army (SJANIC, 2013), but there is great potential for UAV applications for civil

use, by the police, firefighters, environmental activities such as fire tracking, damage survey after

catastrophes such as earthquakes, tsunamis, among others, also considering the automatic pilots

of commercial aircraft, already widely used and which can also benefit from the evolution of

the system. Figure 1 shows some examples of using UAVs in the civil sector. Item a shows the

mapping and assessment of damage caused by disasters, in b it is possible to identify the oil spill

in the ocean, the image of item c reveals the survey of the conditions of electric power lines and

the item d reveals riot monitoring.

Unmanned Aerial Vehicles (UAVs) are considered tools for emergency informatics

(MURPHY, 2016), a scientific field that approaches the use of different data-sets to save lives

in natural or man-made disasters, through acquisition, organization and visualization of data

and, consequently, which actions can be taken into account. Besides the use of UAVs for
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Figure 1 – UAVs executing monitoring of civil application functions

Source: (SJANIC, 2013). Images ©Saab AB.

military proposes, there is potential for civil applications, as forest fire tracking, damage survey

after earthquakes or tsunamis, monitoring of riots, search and rescue of missing people, and

so on. All the information contained in images, scan data, laser data, GPS position or any

other knowledge captured by UAVs might not be readily interpreted by the final user, instead, a

qualitative description that includes cognitive comprehensibility ensuring efficient understanding

by humans without wide computational complexity can yield better results.

When we think about Unmanned Aerial Vehicles, it is likely that images come to our

minds as small UAVs, known as drones, which have served mainly for recreational purposes.

Drones can also be used as a platform for testing systems to be applied to large UAVs, such as the

Safe2Ditch System1 of Figure 2, designed to manage emergencies and safely landing the vehicle

during events of an unexpected critical problem. The Safe2Ditch System uses the control of the

UAV and the rest of the vehicle’s battery in order to reach the safest possible landing location,
1Nasa Website - https://technology.nasa.gov/patent/LAR-TOPS-243 - accessed on

11/06/2017.

https://technology.nasa.gov/patent /LAR-TOPS-243
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Figure 2 – Operating system Safe2Ditch.

Source: Nasa website - https://technology.nasa.gov/patent/LAR-TOPS-243 -
accessed 06/11/2017.

bypassing houses or people, and executing the mission autonomously, without any assistance

from a pilot, security or ground station.

Figure 3 shows an example of a large-sized UAV from the company Northrop-Grumman,

Global Hawk fixed wing model, used for surveillance and reconnaissance of large geographic

areas, providing information about high accuracy in real time, and being able to stay in missions

for more than 32 hours. This UAV is equipped with radar, high resolution optical camera and

infrared sensor. The captured data can be fused in a processor or individually selected to transmit

information to the operator, distinguishing different types of vehicles, aircraft, people, military

devices, even under adverse weather conditions, during day or night. As it is a large equipment,

measuring 40 meters, it can fly over large open areas 2.

The company Northrop-Grumman has a partnership with NASA using the NASA Global

Hawk model, shown in Figure 4 to help scientists on missions during hurricanes and severe

storms off the US coast. The UAV control can be done from two distinct NASA bases, with the
2Northrop-Grumman website - 2016 - http://www.northropgrumman.com/Capabilities/

GlobalHawk/Documents/GH_Brochure_B30.pdf - accessed on 11/02/2017.

https://technology.nasa.gov/patent/LAR-TOPS-243
http://www.northropgrumman.com/Capabilities/GlobalHawk/Documents/GH_Brochure_B30 .pdf
http://www.northropgrumman.com/Capabilities/GlobalHawk/Documents/GH_Brochure_B30 .pdf
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Figure 3 – UAV Northrop-Grumman Global Hawk fixed wing

Source: Northrop-Grumman website2.

Figure 4 – UAV Northrop-Grumman NASA Global Hawk

Source: Northrop-Grumman website3.

support of meteorologists, engineers, pilots and scientists. The UAV flew over the area of the

Atlantic Ocean where hurricanes begin to form, tracking the storms to Caribbean 3.

Another UAV model already on the market is the Skeldar V-200 from Saab AB, which

measures approximately 4 meters and weighs 235 kilos, as shown in Figure 5. This model

performs missions capturing information, flying over land or sea, due to his vertical takeoff
3Northrop-Grumman website - 2013 - http://www.northropgrumman.com/Capabilities/

NASAGlobalHawk/Documents/pageDocuments/NASA-GH_Data-Sheet.pdf - accessed
11/02/2017.

http://www.northropgrumman.com/Capabilities /NASAGlobalHawk/Documents/pageDocuments/NASA-GH_Data-Sheet.pdf
http://www.northropgrumman.com/Capabilities /NASAGlobalHawk/Documents/pageDocuments/NASA-GH_Data-Sheet.pdf
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Figure 5 – UAV Saab AB Skeldar V-200

Source: Saab AB website - http://saab.com/air/airborne-solutions/
unmanned-aerial-systems/skeldar-v-200-land/ - accessed 11/02/2017. Image ©Saab
AB.

and landing system. It is also equipped with a high resolution optical camera, infrared sensor

and synthetic and electronic aperture radar. The UAV counts on surveillance and 3D mapping

capabilities which can be used during the day or at night, with a flight capacity of approximately

5 hours. Due to its small size, even being larger than recreational drones, this equipment can

access smaller places, being used to monitor industrial infrastructure, pipelines in petrochemical

areas, hydroelectric plants, nuclear plants and mines, reducing the risks of human inspection and

sending real-time data to remote control stations 4.

Individually, UAVs have been able to capture and process the acquired information,

according to the applications mentioned. The next challenge is to develop a system that allows a

team of UAVs to map the environment using information from several points of view. Multi-agent

systems are often supposed to have several advantages over single agent systems, as the capability

to accomplish a single task faster, or efficiently exchange information about their position to

precisely localize themselves whenever they sense each other (BURGARD et al., 2000). When

multiple agents are observing a scene and occlusion prevents sensors from assessing parts of

the objects present in the scene, distinct observers can provide multiple viewpoint descriptions
4Saab AB website - 2017 - http://saab.com/air/airborne-solutions/

unmanned-aerial-systems/skeldar-v-200-land/ - accessed 11/02/2017.

http://saab.com/air/airborne-solutions/unmanned-aerial-systems/skeldar-v-200-land/
http://saab.com/air/airborne-solutions/unmanned-aerial-systems/skeldar-v-200-land/
http://saab.com/air/airborne-solutions/unmanned-aerial-systems/skeldar-v-200-land/
http://saab.com/air/airborne-solutions/unmanned-aerial-systems/skeldar-v-200-land/
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about the objects they can detect, improving the completeness of the information observed

(P. E. SANTOS; LIGOZAT; SAFI-SAMGHABAD, 2015).

Furthermore, there is a problem for using external systems to aid navigation systems. The

GNSS (Global Navigation Satellite System) can contribute significantly to improve the accuracy

of UAVs auto-locating and assistance in mapping the environment, but signal availability can

be affected by occlusions or by the intentional blocking of the signal, in case of more hostile

environments (SJANIC, 2013). The intelligent formalism developed in this work for environment

mapping from partial aerial point of view using sensors that can capture signals to scene

interpretation, could turn the agents less dependent of external systems.

For intelligent systems to be able to positively interact in human environments, some

characteristics are essential, such as accurate representations, efficient inference methods and

proximity to human knowledge. That is why this work proposes the studying of knowledge

representation and reasoning processes related to space, the development of new formalism of

Qualitative Spatial Reasoning (QSR) (VAN HARMELEN; LIFSCHITZ; PORTER, 2008), an

area of Artificial Intelligence that seeks to formalize spatial knowledge using elementary entities

, such as spatial regions, directions, line segments, and the application of these formalism in

groups of UAVs that aim to jointly solve a common spatial problem or activity, as mapping a

domain.

Collaborative systems are required to integrate not only robots, but also human resources.

For complex emergency scenarios such as search and rescue missions, providing assistance and

guiding people to a safe destination from inhabitants lost in wilderness regions, at sea scenarios,

places devastated by earthquakes, flooding or forest fires (DOHERTY et al., 2010) it is an

essential role to provide an effective communication and continuous interaction between people

and robotic agents in order to achieve mission goals, specially the ones related to environment

exploration, so that each individual can explore different areas simultaneously (BURGARD et al.,

2000).

This project aims to develop a new Qualitative Spatial Reasoning formalism for collabo-

rative systems, used in the interpretation of scenes from multiple points of view. The intention is

to develop a system based on Qualitative Spatial Reasoning (QSR) theories, integrating such

theories into a single formalism to model the perceptions captured by Unmanned Aerial Vehicles

(UAVs).

Unmanned Aerial Vehicles (UAVs) were chosen in this project to obtain an aerial view of

the environment to be mapped, as well as to use the sensors available in these equipment as a
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source of information, seeking to improve the quality of the scene to be interpreted. In addition,

UAVs are safe, operated remotely, with the smaller ones operating outside regular airspace and,

with the evolution in the development of sensors, communication methods and electronics, they

can be easily controlled through tablets or laptops (HOLMBERG, 2015).

In the development of this work a set of formalism from Qualitative Spatial Reasoning are

joined, providing a qualitative description of a scene, that can be observed by humans and robots,

from different aerial points of view, in a way that all agents involved in the goal of environment

mapping have the possibility to understand the position of objects and the relations between them.

The reasoning presented in Region Connection Calculus (D. RANDELL; CUI; A. COHN, 1992),

Allen’s Interval Algebra (ALLEN, 1990) and Rectangle Calculus (BALBIANI; CONDOTTA;

CERRO, 1998) are used to provide the possible relations between a pair of objects seen from an

aerial point of view, while the Cardinal Direction Calculus (FRANK, 1996) provides the basis

for the orientation definition of those points of view. Humans and robots will be able to exchange

information and infer data about their partial view of the domain through the Spatial Collaborative

Reasoning, an extension of the concepts previously developed in the Interval Occlusion Calculus

(P. E. SANTOS; LIGOZAT; SAFI-SAMGHABAD, 2015).

1.1 MAIN OBJECTIVE

The goal of this work is to develop a formalism based on Qualitative Spatial Reasoning

theories, for the task of environment mapping from partial aerial viewpoint, performed by

multi-agent teams including humans.

To reach this goal it was studied scene interpretation using appropriate spatial constraints,

in order to enable agents to assimilate knowledge about an environment in situations of partial

view of the scene from multiple points of view, captured by UAVs.

The objective of applying such restrictions to multi-agent systems with multiple points of

view, including humans in the team, is to collectively solve problems considered too difficult

or even impossible to be solved by a single agent, enabling the interaction between humans

and robots. Qualitative theories enables the exchange of information between humans and

robotic agents, so that they can perform tasks in collaborative missions involving searching and

monitoring objectives in agriculture, natural disasters, searching and rescue tasks, among others.
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This work also develops the method to mediate the process of obtaining joint solutions,

studding and implementing a system in which solutions generated by multiple agents are integrated

in a collaborative process, where qualitative spatial constraints are satisfied.

1.2 CONTRIBUTIONS

To achieve the objective of this work through purely qualitative techniques, the starting

point was the study of Qualitative Spatial Reasoning (QSR), a sub-field of knowledge repre-

sentation research that deals with knowledge about an infinite spatial domain using a finite

set of qualitative relations, modeling human common sense to understand space (WOLTER;

WALLGRÜN, 2013). Even though quantitative approaches can provide more accurate informa-

tion, specific numerical data can be unavailable to humans (J. CHEN et al., 2015). One of the

conditions to reach the objective of this work is to enable the active interaction between humans

and robotic agents, so, qualitative constraints was chosen to be the language of communication.

Starting from the most embracing formalism about object (that can be considered a

spatial region) relations at a scene, it was studied the Region Connection Calculus, that describes

the basic relations between spatial regions through a constraint language containing 8 JEPD

(Joint Exclusive and Pairwise Disjoint) base relations, which allows reasoning about topological

distinctions, with possibility to infer new spatial relations and transitions from incomplete spatial

knowledge (D. RANDELL; CUI; A. COHN, 1992; RENZ, 2002), a key point for the development

of this work.

Considering that a spatial region can be outlined by a bounding box, the edges of the

bounding box can be considered intervals, from where it is possible to get information from

Allen’s Interval Algebra. This theory describes a temporal representation and reasoning where

temporal interval is considered as a primitive. This method represents the relations between pairs

of reference intervals taking into account their upper and lower limits in a hierarchical manner,

resulting in a set of 13 JEPD base relations (ALLEN, 1990).

As a bounding box has edges parallel to axis x and y, the Rectangle Calculus (BALBIANI;

CONDOTTA; CERRO, 1998) defined as a model for reasoning about bi-dimensional temporal

relations, whose objects are rectangles which sides are parallel to the axes of some orthogonal

basis in a 2-dimensional Euclidean space can also contribute with qualitative information about

the objects present in an environment.
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To represent the qualitative information from each agent’s point of view, this work is

based on the notation developed in the Interval Occlusion Calculus, presenting a qualitative

description of a set of basic relations between pairs of objects observed from a point of view,

given the object’s lines of sight (P. E. SANTOS; LIGOZAT; SAFI-SAMGHABAD, 2015).

At least, to get information about the direction of flight of each UAV used to capture

images of the environment to be mapped, it was used the Cardinal Direction Calculus (FRANK,

1996) information. The Cardinal Direction Calculus is a formalism to reason about cardinal

directions between objects and its relations, being composed by 9 basic relations including a

neutral region.

The research and combination of information resulting from the formalism above described,

resulted in two contributions, described in the following subsections.

1.2.1 First Contribution

The first contribution of this work is the development of a formalism to identify objects

in an environment, consider these objects as regions and enable the acquisition of information

related to the Region Connection Calculus, Allen’s Interval Algebra, Rectangle Calculus and

Interval Occlusion Calculus into a single constraint, which can be acquired from different points

of view. This formalism called LH Interval Calculus uses the bounding boxes around the objects

present in the environment to be mapped, as well as the projection of its outlines on axis s and y

to obtain the relations between the objects from an aerial perspective. The complete development

of LH Interval Calculus is presented in Section 4.2.

1.2.2 Second Contribution

The second contribution is a formalism that allows the combination of the information

contained into two images with partial and complementary views, captured in the same envi-

ronment, by different agents. The information acquired through the LH Interval Calculus is

associated with the Cardinal Direction Calculus, resulting in sentences that contains the complete

information about the environment. This formalism is called Collaborative Spatial Reasoning

and is presented in Section 4.3.
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1.3 THESIS STRUCTURE

This work is divided into chapters, according to the structure:

a) Chapter 2 - Literature Review: concepts necessary for the development of this work

and research related to qualitative reasoning theorems;

b) Chapter 3 - Theoretical Review: theories that form the foundation of this work;

c) Chapter 4 - Method: LH Interval Calculus and Collaborative Spatial Reasoning

description;

d) Chapter 5 - Experiments: description of the experiments to verification of the

formalisms developed;

e) Chapter 6 - Conclusion and future work.
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2 THEORY

This chapter describes the theories on which this research proposal is based. The main

point of these investigations involve the concepts of Cognitive Robotics (Section 2.1), Qualitative

Spatial Reasoning (QSR) (Section 2.2), Region Connection Calculus (RCC) (Section 2.2.1) and

Cardinal Direction Calculus (CDC) (Section 2.2.2), Allen’s Interval Algebra (Section 2.2.3),

Rectangle Calculus (Section 2.2.4), Interval Occlusion Calculus (Section 2.2.5) and Simultaneos

Localization and Mapping (Section 2.3).

2.1 COGNITIVE ROBOTICS

The decision-making for performing tasks in autonomous agents continuously works

with perception of the agents themselves and the environment in which they are immersed, and

action (NEHMZOW, 2012), determining which task to perform and how to perform it. It is

expected to create robots which can learn, understand, and execute tasks as human beings would

do (PAULIUS; SUN, 2019). The integration of different levels of control architecture, involving

the choice and execution of an integrated formalization up to the cognitive aspects, is one of the

challenges of cognitive robotics (PIRRI; MENTUCCIA; STORRI, 2003).

The search for the best training techniques for a robot to perform tasks autonomously

aims at making machines to perform tasks in an acceptable and reliable way by human evaluation,

many of them performed in collaboration between humans and robots (KANDA et al., 2007).

To perform meaninful tasks, the robot should be able to understand its environment

and actions, integrating learning methods and high-level knowledge. In artificial intelligence,

knowledge representation is grounded in formal logical expressions, simbolically and semantically

represented and manipulated by reasoning programs (PAULIUS; SUN, 2019). It is common to

write relations (facts or rules) as clauses that can be used in queries to reasoning and infer new

concepts initially unknown to the agent as implicit knowledge.

High-level knowledge denotes a semantic, structural representation of relations between

different components, giving meaning to low-level representations inputs as perception modules

as audio, vision, or touch, sensor inputs, motion primitives and actuation systems, motion and task

planning or inference systems. The ambivalent description of objects/tools and manipulations in

high and low level representations enables the robot to communicates with humans (PAULIUS;

SUN, 2019).
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A constrained set of terms or language defines an ontology, used to label and describe

the working space of a robotic agent, combining several types of information, in a format

understandable by humans. Cognitive architectures emphasize on how knowledge is learned and

retained, and are activated once their arguments have been fulfilled by identifying them through

the robot’s perception system (PAULIUS; SUN, 2019).

The combination of geometric data with semantic data is proposed in Semantic Object

Maps (SOM) (PANGERCIC et al., 2012), with the objective of answering queries to determine

whether certain action can be executed given present circumstances in its environment. Figure

6 shows an instance that can be inferred to be a kitchen because there are items within the

environment that are typical of a kitchen, such as a stove or a fridge (PANGERCIC et al., 2012).

Figure 6 – Semantic Object Map representation.

Source: (PANGERCIC et al., 2012).

Researches focused on using robotic perception are usually carried out in controlled

environments and performing specific tasks, given the degree of uncertainty existing in dynamic
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environments, such as (SCHERL; LEVESQUE, 1993), which used the information perceived by

a robot to produce knowledge from its actions, or in (P. E. SANTOS; SHANAHAN, 2002) where

the data collected by the sensors of a mobile robot formed the basis for the construction of a

spatial reasoning system.

However, researchers have realized that it is possible to elevate robotic cognitive capacity,

adding different algorithms developed to perform tasks (MCCARTHY, 2007), as proposed in

this research, using Qualitative Spatial Reasoning in the formalization of Collaborative Spatial

Reasoning for scene interpretation.

2.2 QUALITATIVE SPATIAL REASONING

Qualitative Spatial Reasoning (QSR) is an area of Artificial Intelligence that seeks the

formalization of spatial knowledge and the inference of facts about the structure of a domain

from elementary entities such as spatial regions (D. RANDELL; CUI; A. COHN, 1992), line

segments (MORATZ; RENZ; WOLTER, 2000; SCHLIEDER, 1996), directions (FREKSA, 1992;

LIGOZAT, 1998), topology, distance between objects (A. G. COHN; HAZARIKA, 2001), among

others (STOCK, 1998; A. G. COHN; HAZARIKA, 2001; J. CHEN et al., 2015), in addition to

making explicit common sense knowledge, coupled with abstractions to create mathematical

models (A. G. COHN et al., 1997). From the mentioned entities and their transitions, axioms are

created to represent the knowledge about space and adequated methods to represent continuous

properties in the world, using a system based on discrete symbols.

In a QSR system for a robotic agent, the agent is equipped with computer vision to

interpret the three-dimensional world from two-dimensional information images, where bodies

can be defined as physical objects, and regions can be divided into two sets: three-dimensional,

which denote the volume occupied by the body, and two-dimensional, which denote the image

of the projected body,seen from a point of view (D. RANDELL; WITKOWSKI; SHANAHAN,

2001).

Uncertainty is an intrinsic feature on capturing information or representing knowledge in

the real world, especially in dynamic environments due to human error or contradictory data

of different sources (SIOUTIS; WOLTER, 2021). Even a qualitative approach dealing with a

certain degree of uncertainty, in some situations it is not possible to represent the qualitative

relations properly (J. CHEN et al., 2015). A more comprehensive synthesis of this problem can

be found in (A. G. COHN; HAZARIKA, 2001; J. CHEN et al., 2015).
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Even so, the works (YAMAN; NAU; SUBRAHMANIAN, 2004; MULLER, 1998) were

developed in dynamic environments and address the use of QSR in the formalization of a Logic

of Motion (LOM). The applications of this logic ranges from real-time monitoring of several

aircrafts till information about the movement of people with cell phones, for better choice of

positioning of transmission towers, for example.

Maintaining the consistency in space and time are the basics in qualitative reasoning

when solving spatial and temporal problems (FALOMIR; PICH; COSTA, 2020). Qualitative

Shape Descriptors (QSD) include qualitative angles and lenght, and is an area of Qualitative

Spatial Reasoning applied to compute shape similarity, being effective to mosaic building, for

example (FALOMIR; PICH; COSTA, 2020).

Qualitative Shape Descriptors can describe straight lines, geometrically defined by a

segment with a starting and an ending point, and also curves. In object composition operators,

the length comes from relating an edge from an object with another edge from a different object.

As all the objects involved in the composition are known, the largest object is taken as a reference

and the rest of the edges are compared in relation to it (FALOMIR; PICH; COSTA, 2020).

The Length Reference System is a set of qualitative symbols and structure relations for

interval values, obtained by trigonometry. The set of relations of the Length Reference System is

composed by the following relations: smaller-short (ss), short (s), larger-short (ls), quarter-longest

(ql), smaller-medium (sm), medium (m), larger-medium (lm), half-longest (hl), smallerlong (sl),

long (l), larger-long (ll), longest (lst), largerthan-longest (llst) (FALOMIR; PICH; COSTA, 2020).

The baseline for the Length Reference System is showed in Figure 7.

The composition table of Figure 8 relates all the different combinations of qualitative

lengths.

It is found the use of QSR in geographic applications, such as in the works of (SCHULTZ;

GUESGEN; AMOR, 2006; TORRES et al., 2016; WALLGRÜN, 2010), aiming at learning

topological maps in unknown environments, methods to deal with ambiguity in topological

information, in addition to human-computer and systems integration of geographic information.

These themes are important for this research proposal, for the aspects of environment mapping

and the human-computer interaction coping with the ongoing efforts to implement tools for

practical tasks such as data verification, repair and visualization.

Among the QSR attributes, the characteristic "region" was used for the development of

the Region Connection Calculus, discussed in Section 2.2.1, one of the best known theories to
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Figure 7 – Relations of lenght among Tangram pieces.

Source: (FALOMIR; PICH; COSTA, 2020).

Figure 8 – Composition table for length in Qualitative Shape Descriptors.

Source: (FALOMIR; PICH; COSTA, 2020).
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represent and reason about topological relations, being the basis for others Qualitative Spatial

Reasoning approaches (J. CHEN et al., 2015).

2.2.1 Region Connection Calculus

The Region Connection Calculus (RCC) (D. RANDELL; CUI; A. COHN, 1992) consists

of a model of representation and axiomatic reasoning about relations concerning spatial regions

in first order logic, which is based on a primitive binary relation of symmetric and reflexive

connectivity. The basis of these relations is the binary primitive “connected”, given two regions

x and y, C(x,y), read as “the region x is connected to the region y ”, being true if and only if the

regions x and y have at least one point in common.

The Region Connection Calculus represents the mereotopological relations between

spatial regions that are independent from the observer’s point of view, unlike the Lines-of-Sight

Calculus (GALTON, 1994) which, from one point of view, represents the relative positions

between pairs of non-overlapping convex bodies.

The connectivity relations defined by the Region Connection Calculus obey the following

axioms (D. RANDELL; CUI; A. COHN, 1992; GOTTS, 1994):

∀ x C(x,x);
∀ x y C(x,y) → C(y,x).

Assuming the binary relation C/2 and the variables x, y and z for spatial regions, different

relations between pairs are defined. The relations established by the RCC and its interpretations

are described in Table 1 (D. RANDELL; CUI; A. COHN, 1992; RENZ, 2002). The relations

DC, EQ, PO, EC, TPP , NTPP , TPPI and NTPPI form a set of mutually exclusive and

jointly exhaustive and pairwise disjoint, that is, two regions cannot be represented by more than

one RCC relation. This set is referred as RCC-8 (D. RANDELL; CUI; A. COHN, 1992; STOCK,

1998; RENZ, 2002).

The change in the relations between regions defined by the RCC occurs continuously, that

is, when a relation changes, it results in a close or neighboring relation. Figure 9 graphically

represents a subset of the RCC, containing the eight basic relations called RCC-8. In Figure

9 the transitions are represented by arrows determining that, between two relations connected

by an arrow, there is no other possible relation. This representation is known as Conceptual

Neighborhood Diagram (CND) (CUI; A.G. COHN; D.A. RANDELL, 1992; D. RANDELL;

CUI; A. COHN, 1992).
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Table 1 – RCC relations and interpretations.
RCC Relations Definition RCC Relations Interpretation
DC(x,y) ≡def ¬C(x,y) ‘x is diconnected from y’
P (x,y) ≡def ∀z[C(z,x) → C(z,y)] ‘x is part of y’
PP (x,y) ≡def P (x,y) ∧ ¬P (y,x) ‘x is proper part of y’
EQ(x,y) ≡def P (x,y) ∧ P (y,x) ‘x = y’: ‘x is equal to y’
O(x,y) ≡def ∃ z[P (z,x) ∧ P (z,y)] ‘x overlaps y’
PO(x,y) ≡def O(x,y) ∧ ¬P (x,y) ∧ ¬P (y,x) ‘x partially overlaps y’
DR(x,y) ≡def ¬O(x,y) ‘x is discrete from y’
EC(x,y) ≡def C(x,y) ∧ ¬O(x,y) ‘x is externally connected to y’
TPP (x,y) ≡def PP (x,y) ∧ ∃ z[EC(z,x) ∧ EC(z,y)] ‘x is tangential proper part of y’
NTPP (x,y) ≡def PP (x,y) ∧ ¬∃ z[EC(z,x) ∧ EC(z,y)] ‘x is non-tangential proper part of y’
PI(x,y) ≡def P (y,x) ‘y is part of x’
PPI(x,y) ≡def PP (y,x) ‘y is proper part of x’
TPPI(x,y) ≡def TPP (y,x) ‘y is tangential proper part of x’
NTPPI(x,y) ≡def NTPP (y,x) ‘y is non-tangential proper part of x’

Source:(D. RANDELL; CUI; A. COHN, 1992; RENZ, 2002).

Figure 9 – RCC-8 Conceptual Neighborhood Diagram.

Source: (FENELON, 2014), adapted from (CUI; A.G. COHN; D.A. RANDELL, 1992).

Extending the RCC concept to three objects a, b and c, Table 4 represents the RCC-8

Composition Table, where the first column represents the relations between a and b (R1(a,b))

and the first line the relations between b and c (R2(b,c)). The set of possible relations between a

and c (R3(a,c)) are represented in the cells defined by the intersection between the column of

R1(a,b) and the line from R2(b,c).

The Composition Table is a tool used to represent and reason about the disjunctions

and conjunctions of pairs of the set of binary relations of the RCC, both spatial and temporal

(D. RANDELL; WITKOWSKI, 2002). This table contains the transitivities between three distinct

regions a,b and c, where, given the information about the relations between a and b and between

b and c, it is extracted a set of possible relations between the regions a and c. (D. RANDELL;

WITKOWSKI, 2002).

The information shown in Table 4, where it is possible to infer information about objects

that did not have their data collected, is interesting to this research work because, as different

points of view are present in a scene, it is possible to infer environmental characteristics or
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Table 2 – RCC-8 Composition Table.

R2(b,c)
R1(a,b) DC EC PO TPP TPPI EQ NTPP NTPPI
DC DC, EC, DC, EC, DC, EC, DC, EC, DC DC DC, EC, DC

PO, TPP, PO, TPP, PO, TPP, PO, TPP, PO, TPP,
TPPI, EQ, NTPP NTPP NTPP NTPP

NTPP,
NTPPI

EC DC, EC, DC, EC, DC, EC, EC, PO, DC, EC EC PO, TPP, DC
PO, TPPI, PO, TPPI, PO, TPP, TPP, NTPP

NTPPI TPPI, EQ NTPP NTPP
PO DC, EC, DC, EC, DC, EC, PO, TPP, DC, EC, PO PO, TPP, DC, EC,

PO, TPPI, PO, TPPI, PO, TPP, NTPP PO, TPPI NTPP PO, TPPI,
NTPPI NTPPI TPPI, EQ, NTPPI

NTPP,
NTPPI

TPP DC DC, EC DC, EC, TPP, DC, EC, TPP NTPP DC, EC,
PO, TPP, NTPP PO, TPP, PO, TPPI,

NTPP TPPI, EQ NTPPI
TPPI DC, EC, EC, PO, PO, TPPI, PO, TPP, TPPI, TPPI PO, TPP, NTPPI

PO, TPPI, TPPI, NTPPI TPPI, EQ NTPPI NTPP
NTPPI NTPPI

EQ DC EC PO TPP TPPI EQ NTPP NTTPI
NTPP DC DC DC, EC, NTPP DC, EC, NTPP NTPP DC, EC,

PO, TPP, PO, TPP, PO, TPP,
NTPP NTPP TPPI, EQ,

NTPP,
NTPPI

NTPPI DC, EC, PO, TPPI, PO, TPPI, PO, TPPI, NTPPI NTPPI PO, TPP, NTPPI
PO, TPPI, NTPPI NTPPI NTPPI TPPI, EQ,

NTPPI NTPP,
NTPPI

Source: (D. RANDELL; WITKOWSKI, 2002).

relations through the different information captured by each agent, following a logical formalism

such as the method shown in the RCC-8 Composition Table.

A qualitative reasoning to deal with different perspectives perceived by multiple agents

observing a scene called Cardinal Direction Calculus is described in the next section.

2.2.2 Cardinal Direction Calculus

The Cardinal Direction Calculus (CDC) (FRANK, 1996) it is another formalism from

Qualitative Spatial Reasoning to reasoning about directions between spatial objects and their

relations. The formalism is composed by nine basic relations, considering a neutral region: north
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Table 3 – Cardinal Direction Calculus Composition Table.

N NE E SE S SW W NW 0
N N N NE e o w NW NW N
NE NE NE NE e e o n n NE
E NE NE E SE SE s o n E
SE e e SE SE SE s s o SE
S o e SE SE S SW SW w S
SW w o s s SW SW SW w SW
W NW n o s SW SW W NW W
NW NW n n o w w NW NW NW
0 N NE E SE S SW W NW 0

Source: (LIGOZAT, 1998).

(n), east (e), west (w), south (s), northwest (nw), northeast (ne), southeast (se), southwest (sw)

and equal (eq) corresponding to the central neutral region. Each relation can be seen in Figure 10.

At first, (FRANK, 1996) studied the division of spaces into quadrants and into cone-

shaped, concluding that the quadrant shape contains a greater number of exact deductions in

a composition table. The quadrant approach is shown in Figure 10 being the related objects

represented by points (Figure 10 left) or by regions (Figure 10 right).

Figure 10 – Cardinal Direction Calculus representation, quadrant projection.

Source:
(LIGOZAT, 1998).

As well as the Region Connection Calculus, the Cardinal Direction Calculus also has a

Composition Table, showed in Table 3.

Through the CDC relations it is possible to infer the direction between two objects A and

C, from the knowledge about the direction between A and (another object) B and between B and

C. This inference derives from the Composition Table between the nine basic relations, shown in

Table 3, being the result a set of exclusively disjoint possibilities (LIGOZAT, 1998). The concept

of neighborhood is also applicable due to the topology of the relations defined by the proximity

between regions, for example, the transition that can occur from the southeast relation se is the



34

subset composed of the relations s (south), e (east), se (southeast) and eq (equal) (LIGOZAT,

1998).

In (FENELON, 2014) the concepts related to direction relations were used in the task of

self-localization of a mobile robot in relation to multiple objects, where the transition relations

and distance calculus were used with topological calculus based on the relations of occlusion to

formalize the robot’s location through a qualitative map.

The Qualitative Spatial Reasoning theories described here are used to infer information

from images obtained by cameras installed in UAVs. In a real environment, the system has to

deal with uncertainties caused by sensor noise or any kind of information loss.

2.2.3 Allen’s Interval Algebra

From the perspective of artificial intelligence, Allen’s Interval Algebra describes a

temporal representation and reasoning where temporal interval is considered as a primitive. This

method represents the relationships between pairs of reference intervals taking into account

their upper and lower limits in a hierarchical manner, resulting in a set of 13 jointly-exhaustive

and pairwise-disjoint base relations (ALLEN, 1990). Figure 11 shows Allen’s relations for two

intervals, x and y.

Figure 11 – Allen’s Relations
(P. E. SANTOS; LIGOZAT; SAFI-SAMGHABAD, 2015), adapted from (ALLEN, 1990).
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Considering a constraint network pair (N,C), N being the set of vertices where each

domain element is represented by a vertex, and C representing the set of constraints defined by the

basic Allen’s relations, it is possible to verify the existence of a consistent scenario by imposing

algebraic closure on the network of constraints, to confirm whether the configurations provided

by the information from the agents are feasible in at least one scenario of a domain described by

the set of Allen’s relations (P. E. SANTOS; LIGOZAT; SAFI-SAMGHABAD, 2015).

A network (N,C) is algebraically closed if its three vertices (i, j, k) ∈ N 3, and is consistent

with the composition C(i, j) ⊆ C(i,k) ◦ C(k,j) . This concept supports the Spatial Collaborative

Reasoning proposed in this work and the definition of the relations of the objects identified by

agents with a partial view of the environment.

In the work of (FALOMIR; PICH; COSTA, 2020), a qualitative model for angles is

proposed, where an angular relation α is defined by three points: a,b,c. The Angle Reference

System is composed by a set of spatial relations [very-acute (va), half-right (hr), acute (a), right

(r), obtuse (o), 3q-right (3qr), very-obtuse (vo), plane (pl), full], which contains a set of qualitative

symbols and a set of structure relations defining the acceptance areas or interval values for each

qualitative symbol.

Figure 12 shows the Qualitative Angles and their Convexities, where a convex angle (cx)

refers to the angle located in the interior of the object, while a concave angle (cv) refers to the

angle on the exterior of the object.

The spatial relations between angles can be defined similarly to Allen’s relations between

time intervals, according to the information of Figure 13 (FALOMIR; PICH; COSTA, 2020).

The spatial relations between angles resulted in two composition tables, one for convex

(cx) angles (Figure 14) and another for convex (cx) and concave (cv) angles (Figure 15).

An extension of Allen’s Interval Algebra called Rectangle Calculus was developed

proposing to reason about bi-dimensional temporal relations, and is described in the next section.

2.2.4 Rectangle Calculus

The Rectangle Calculus can be defined as a model for reasoning about bi-dimensional

temporal relations, whose objects are rectangles which sides are parallel to the axes of some

orthogonal basis in a 2-dimensional Euclidean space (BALBIANI; CONDOTTA; CERRO,

1998). The rectangle model is defined by the relational structure M = (R, m1, m2), where R is

a nonempty set of rectangles and mi a binary relation on R.
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Figure 12 – Qualitative Angles.

Source: (FALOMIR; PICH; COSTA, 2020).
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Figure 13 – Spatial relations between angles.

Source: (FALOMIR; PICH; COSTA, 2020).
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Figure 14 – Composition Table for angle feature in Qualitative Shape Descriptors when
composing convex (cx) angles.

Source: (FALOMIR; PICH; COSTA, 2020).

Figure 15 – Composition Table for angle feature in Qualitative Shape Descriptors when
composing convex (cx) and concave (cv) angles.

Source: (FALOMIR; PICH; COSTA, 2020).

Figure 16 – Two different examples where relation meets applies.
(BALBIANI; CONDOTTA; CERRO, 1998).
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In this work, the bounding box that enfolds the objects present in an image are considered

rectangles, following the same reasoning of the Rectangle Calculus, but extended to two axis

projections, as explained in Section 4.2. The left configuration of Figure 16 represents a situation

that can be read as x m1 y or the same vertical line reaches the right side of x and the left side of

y. Consequently, the right configuration can be read as x m2 y or the same horizontal line reaches

the top side of x and the bottom side of y (BALBIANI; CONDOTTA; CERRO, 1998).

According to (ALLEN, 1990), Interval Algebra has 13 atomic relations: A int = {p, m, o,

s, d, f, pi, mi, oi, si, di, fi, eq}. Extending this reasoning to Rectangle Algebra, it is possible to say

that it has 13 x 13 atomic relations, which constitute the exhaustive list of 169 pairs of relations

which can hold between two rational rectangles. Let “x" denotes the cartesian product and “◦"

denotes the composition of a pair of relations, the consistency of the composition C(i, j) ⊆ C(i,k)

◦ C(k,j) for the rectangle algebra includes:

The cartesian product of two pairs of relations, defined by (A,B) x (C,D) = (A,C), (A,D),

(B,C), (B,D).

The rectangle composition, defined by (A, B) ◦ (C, D) = (A ◦ C) x (B ◦ D) (BALBIANI;

CONDOTTA; CERRO, 1998).

Allen’s Interval Algebra is also extended to the Interval Occlusion Calculus, developed

to reason about occlusion from multiple points of view, and described in the next section.

2.2.5 Interval Occlusion Calculus

Interval Occlusion Calculus (IOC) is a qualitative description of a set of basic relations

between pairs of objects observed from a point of view, given the object’s lines of sight (P. E.

SANTOS; LIGOZAT; SAFI-SAMGHABAD, 2015). Considering that two objects A and B

can be observed from a point of view Σ, the function image defined by a = image(A, Σ) and

b = image(B, Σ), maps the image of a physical body seen from a viewpoint Σ. Figure 17

illustrates an example of two bodies A and B, as well as a map based on the object’s lines of sight,

enabling the observers to locate themselves with respect to the qualitative relations observed

between the images of the objects. If Σ is located in the region of the map marked by p, then the

observer will notice that a precedes b, or if Σ is located in the region o+, it could be seen that a

overlaps and is in front of b. The same reasoning applies to all other positions of the map.

Reasoning about different points of view, it is possible to interpret that if Σ1 sees {a p b},

{σ2 pi a}, and {σ2 p b}; then Σ2 is in Region (2) of the map and its possible observations is the
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Figure 17 – Basic Relations of Interval Occlusion Calculus
(P. E. SANTOS; LIGOZAT; SAFI-SAMGHABAD, 2015).

set of relations {a’ {pi; p} b’}. As another example, if Σ2 is in the red-dashed region between A

and Σ1, then Σ1 observes that {σ2 {s+, f+, d+} a}, and the set of relations from Σ2 would be {a’

{p, m, o+} b’} (P. E. SANTOS; LIGOZAT; SAFI-SAMGHABAD, 2015).

Following the same idea of IOC, the Spatial Collaborative Reasoning first introduced in

this work aims to identify the objects positions and its relations from multiple points of view, but

the formalism is not based on occlusion, taking into account that the objects rarely occlude each

other from an aerial point of view.

2.3 SIMULTANEOUS LOCALIZATION AND MAPPING

When a mobile robot has no access to the map of the environment, nor its own location,

the concept of Simultaneous Localization and Mapping (SLAM) is used so that the agent can

estimate a map, or the environment spatial model, and simultaneously locate itself in relation

to this map (THRUN; BURGARD; FOX, 2005). Mobile robots must be able to perceive the

environment through sensors.

The oldest and most influent SLAM algorithm is based on the Extended Kalman Filter.

Among its features, we have the reference points map. The algorithm processes only positive

observations of reference points, being unable to detect the absence of any of them in the sensor

measurement. As less ambiguous are the reference points, better the algorithm works. In addition,

the Extended Kalman Filter assumes noise in the robot’s perception and movement, but the
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amount of uncertainty caused by such noise must be relatively small so that the error considered

in the creation of the map is tolerable (THRUN; BURGARD; FOX, 2005).

One of the techniques used to deal with noise, as false markings identified by the agent, is

to create a provisional reference list. Each new reference point found is added to a list and not

straight to the map, decreasing the influence in the inference in the position of the robot. Once

the reference point has been consistently observed, it is transferred to the map created by the

agent (THRUN; BURGARD; FOX, 2005). This process reduces the number of markings added

to the map, making them more likely, and facilitating the removal of inconsistent landmarks. The

greater the number of markings, greater the chance of erroneous reference points to be present,

however, few markings turns difficult the automatic location of the robot. So, it is necessary

to define the ideal amount of markings for the agent to achieve a certain objective (THRUN;

BURGARD; FOX, 2005).

A wide range of algorithms were derived from the concepts mentioned and applied to

the SLAM problem. One of the alternatives to algorithms based on the Kalman Filter is the

Expectation Maximization algorithm, capable of generating consistent maps of the environment,

executing the process cyclically. Expectation Maximization algorithms do not generate maps

incrementally, but search for the most likely map in the set of all generated maps at each cycle

(THRUN, 2002). The Incremental Maximum Likelihood Method is an hybrid model for the

incremental creation of a single map as the sensor data is observed, but without the uncertainty

caused by noises (THRUN, 2002).

Considering that the robot’s position is previously known, the Occupancy Grid Mapping

algorithm aims at generating a consistent metric map, starting from noisy or incomplete sensor

data, being used mainly in agents with long-range sensors, such as sonar or laser, both characterized

by the presence of noises (THRUN, 2002). The Object Mapping algorithm addresses the problem

of constructing maps composed by basic geometric shapes or objects, such as lines or walls,

to represent 2D maps using lines instead of grids. The advantage of this method is a compact

map, with greater accuracy, representations able to describe dynamic environments and closer to

human perception of environment (THRUN, 2002).

For dynamic environment mapping, the Dynamic Occupancy Grid Mapping Algorithm

(DOGMA) learns dynamic object models, represented by occupation grid maps of objects in

specific locations, for example, the shape of a chair, which can be used to model a new object.

As long as the environment is being observed, the algorithm assumes that the object may have

been moved, resulting in a different global occupancy map (THRUN, 2002).
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SLAM concepts were studied for the development of a system to allows environment

mapping, considering qualitative spatial characteristics, observed from different points of view,

and using the software that best adapts to these characteristics.
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3 LITERATURE REVIEW

This chapter describes the necessary concepts for the development of this project and the

works where such concepts were applied. Much of the investigations involve the theory about

Qualitative Spatial Reasoning (QSR), Multi-agent Systems, Robotic Localization and Image

Interpretation.

3.1 QUALITATIVE SPATIAL REASONING

The development of this project is based on the theories of Qualitative Spatial Reasoning

(QSR), area of Artificial Intelligence that purposes to formalize spatial knowledge using

elementary entities, such as spatial regions, directions, line segments, among others, without the

use of traditional quantitative techniques (VAN HARMELEN; LIFSCHITZ; PORTER, 2008),

aiming at representing the spatial perception of an agent with high-level representation.

It is common the usage of QSR concepts in conjunction with other methods of information

interpretation, enabling the interaction between quantitative and qualitative representations in

an agent’s learning (A. G. COHN et al., 2006). An example of this application is the work

presented by (P. E. SANTOS et al., 2016), showing a probabilistic localization algorithm based

on QSR representation formalism. This algorithm was used in a mobile robot self-localization

system that performs probabilistic localization without the acquisition of metric information,

defined through Qualitative Spatial Reasoning. The concepts of the Region Occlusion Calculus

(KÖHLER, 2002) and Region Connection Calculus (D. RANDELL; CUI; A. COHN, 1992) were

used in the creation of a map of relative positions, divided into regions, using colored and static

objects, observed through a camera installed on a mobile robot.

Another work that combines qualitative data with probabilistic techniques were presented

in (FENELON, 2014). The qualitative model Perceptual Qualitative Relations about Shadows

(PQRS) (P. E. SANTOS; H. M. DEE; FENELON, 2009) were combined with the probabilistic

technique Bayes Filter resulting in the work called Image Interpretation with Probabilistic

Qualitative Spatial Reasoning. The qualitative-probabilistic approach is applied to robot

localization, where a robot can locate itself through observations of objects and their shadows.

The agent reasons about the relations between shadows and objects, based on the relations from

the Region Occlusion Calculus (KÖHLER, 2002) and from the Region Connection Calculus

(D. RANDELL; CUI; A. COHN, 1992).



44

Figure 18 – Qualitative map

Source: (FENELON, 2014).

In the experiment, the robot collected images in an office environment, and should locate

itself with respect to a black bucket (the object) and its shadow. The agent infered its qualitative

position, according to the qualitative map showed in Figure 18, where the space is devided into

five distinct regions. In each region of the map the robot perceives a different object-shadow

relation (FENELON, 2014).

Figure 18 shows the representation of the qualitative map containing five distinct regions,

showing the left and right sides and regions (Region1 to Region5). The lines of sight between

the L light source, the O object and its shadow define the boundaries between the regions. In

this diagram, only the top of the shadow is used to defining the regions (FENELON, 2014).

As the PQRS is based on the Region Occlusion Calculus and Region Connection Calculus,

first order logics, the method cannot handle uncertainty. To deal with the noisy of the vision

system, the combination of PQRS with a Bayes filter, was used to describe the robot’s belief in

the state st, given all the evidences e0 : t up to time t. The state st represents a region of the

qualitative map and the evidences are the terms denoted by the PQRS (FENELON, 2014). The

results showed that the accuracy of the robot self localization using only the PQRS is 58% while

the probabilistic qualitative self localization resulted in 80% of accuracy.
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The present work investigated the use of Qualiative Spatial Reasoning for a multi-agent

system, enabling the exchange of information between two or more robots, taking into account

aerial points of view, captured by the UAVs. From an aerial point of view, the occlusion and

connection relations of regions are identified from a different perspective compared to those

observed by a terrestrial agent.

The proposed multi-agent system can be applied to dynamic formalisms, as in (SOUCHAN-

SKI; P. E. SANTOS, 2008), where a reasoning about actions and changes is shown, to facilitate

autonomous inferences about the behavior of other agents (observed from a point of view ) and

(P. E. SANTOS; SHANAHAN, 2003); (P. E. SANTOS, 2007), where the building blocks of a

system show the qualitative changes observed by a mobile robot in a qualitative spatial reasoning

formalism.

3.2 MULTI-AGENT SYSTEMS

In the works mentioned in the previous section, it is assumed a continuous input of data

received from a single agent, which performs the representation and inferences related to spatial

perceptions. The spatial knowledge cannot be maintained by the system, if the robot or sensor

suffers a fault causing an interruption in the signal transmission, or when there is more than one

robot exploring the environment.

In this project, we propose the use of the Collaborative Spatial Reasoning System, seeking

to develop a spatial reasoning system with multiple points of view, capable of representing the

different points of view of a multi-robot system and providing communication between them, in

a way that each agent can efficiently reestablish the flow of information received or transmitted to

other agents, or even acquired through its own sensors.

Detailed theoretical studies regarding multi-agent systems and empirical tests were carried

out in a system capable of describing the relations between visible objects in the field of view of

a group of agents, with the information acquired in a point of view shared between the agents

(P. E. SANTOS; LIGOZAT; SAFI-SAMGHABAD, 2015).

In the context of global location, collaborative systems primarily aim at exchanging

information between two or more agents because when one robot determines the location of

another robot relative to its own location, both can refine their internal beliefs based on where

the other robot is, improving the accuracy of its location. In a set of different robots, the point
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Figure 19 – Projective Preposition Regions

Source: (PERICO; P. E. SANTOS; BIANCHI, 2021).

of view of each robot can reduce the uncertainties in their respective estimated locations (FOX

et al., 2000).

The proposal of the work (PERICO; P. E. SANTOS; BIANCHI, 2021), consists in the

guided navigation of a single agent that can be either a human, as a robot (terrestrial or aerial),

which does not perceive the world. The guided navigation uses linguistic spatial instructions based

on projective relations, which are obtained by combining the perspective of multiple non-human

agents. An agent should be guided by a set of other non-human autonomous agents with computer

vision, to a goal. The guided agent receive more abstract and high-level instructions that may

be understandable by any kind of agent. The navigation is carried out through instructions of

relative directions based on four projective linguistic spatial prepositions: right, left, front and

back.

In the movement model proposed, the agent can act in five different ways: “stop”, “move

forward”, “turn right and move forward", "turn left and move forward", "turn back and move

forward”. Figure 19 shows the projective prepositions regions.

Regardless of the number of observer agents, instructions related to movements are

transmitted to the agent guided by only one observer agent, who will be defined as coordinator.

The coordinator makes the necessary inferences, given the perspectives and guidance of all other

observer agents involved, except for the stop instruction, that can be given by any observer agent

(PERICO; P. E. SANTOS; BIANCHI, 2021).

Two hybrid models, qualitative-probabilistics, were proposed. The first model presented,

QPFGNm, uses qualitative data to feed a particle filter that is responsible for tracking the guided
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Figure 20 – Simulated Experiment

Source: (PERICO; P. E. SANTOS; BIANCHI, 2021).

agent along the entire route until the objective is reached. The prediction of the translation

movement and the update are performed based on the qualitative regions generated by joining

the angular sectors defined in StarV arsm (PERICO; P. E. SANTOS; BIANCHI, 2021).

The second model, NPFGNQIm, uses direction and orientation numerical data to feed

a conventional particle filter and, through these particles, track and infer numerical instructions

that are transformed into instructions based on projective prepositions for the guided agent, in

order to lead him to the goal. The prediction of the translation movement is done with random

data and the update of the particle weights is done based on a Gaussian distribution with defined

deviation (PERICO; P. E. SANTOS; BIANCHI, 2021).

The experiments to verify and evaluate the behavior of the proposed models were carried

out with humanoid robots of different colors, that follow the rules and restrictions imposed

by the domain found in RoboCup Soccer Humanoid League, with five space entities: three

humanoid robots observers, a guided humanoid robot and a goal, represented by a ball (PERICO;

P. E. SANTOS; BIANCHI, 2021).

Simulated experiments demonstrated that the NPFGNQIm model is more efficient than

the QPFGNm model because it had the smallest path sizes and managed to get the robot closer

to the objective entity, even considering that the sizes of the objective regions were the same for

all the models (PERICO; P. E. SANTOS; BIANCHI, 2021).
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Figure 21 – Real Data Experiment

Source: (PERICO; P. E. SANTOS; BIANCHI, 2021).

For real situation experiments, the both models tested proved to be effective, however,

several problems were found in the application of the models with real robots, as delays in the

network, detection of the agents and the objective entity through computer vision using only

color segmentation (PERICO; P. E. SANTOS; BIANCHI, 2021).

Applying the multi agent system concepts to Unmanned Aerial Vehicles (UAVs) and

operators or pilots in highly complex missions, a conceptual framework and an architecture to

deal with the specification, generation and execution of collaborative missions was developed

(DOHERTY; HEINTZ; KVARNSTRÖM, 2013). In order to clarify, verify and validate the

different types of interaction between operators or pilots and UAVs, a triad was created with

fundamental and independent concepts: delegation, mixed initiative interaction and adjustable

autonomy. In this way, the interaction and negotiation between pilots or operators and UAVs

can take advantage of the skills, capabilities and knowledge of each component involved in the

development of a mission (DOHERTY et al., 2010).

Still in the field of multi-agent systems, the main objective of the logic probabilistic

structure developed in the work of (POTYKA et al., 2016) was to obtain the preference of a set

of agents, based on the value of their beliefs and utility of such preferences, instead of using

the individual preference of each agent in a decision-making situation. For this purpose, an

individual knowledge base was developed for each agent, containing their individual beliefs about

the available alternatives, represented by conditional probabilistics that express their subjective
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beliefs, in addition to the criteria considered important for the decision. In this way, it was

possible to obtain an interval of expected utilities regarding the agents’ group of beliefs, which

gave rise to three group preference relations: an optimistic, a pessimistic and a cautious one.

In other works, initially the individual preference of each agent is calculated, then voting

rules are applied or weights are given to the alternatives and finally the group decision process is

applied. In the work of (POTYKA et al., 2016), the first step is to gather the individual beliefs

of each agent, forming groups of preferences, and then the group decision processes start to

be executed, with the proper weights or voting system. This decision-making method can be

studied for application in other axioms and properties in different systems, enabling a comparison

between the performance, accuracy and robustness of information fusion methods.

3.3 ROBOTIC LOCALIZATION

The use of robotic technology can currently be observed not only in industries, but

also in domestic environments, offices and public places. In these environments, there is an

interaction with people, requiring robotic agents to move safely to fulfill the tasks to be performed

(KRUSE et al., 2013). Seeking to meet this necessities, robotic localization consists of estimating

the coordinates of an agent relative to the external environment, providing the agent with

autonomous navigation skills as locating, planning, building or interpreting maps and motion

control (SIEGWART; NOURBAKHSH; SCARAMUZZA, 2011; NEHMZOW, 2012) .

In this work, qualitative localization is addressed, following the ideas originated in

(LEVITT; LAWTON, 1990), where a topological map was constructed, having the edges of

the regions defined by a set of lines connecting pairs of landmarks; or even in the spatial

representation called panorama, which restricts the location of a point relative to the visual

ordering of objects observed around the robot (SCHLIEDER, 1996). The notion of qualitative

navigation is defined in (SCHLIEDER, 1996), by changes in the ordering of information, which

occurs when the observer crosses each one of the virtual lines defined by the reference objects,

an idea applied to a domain of the RoboCup reported in the work of (WAGNER; VISSER;

HERZOG, 2004).

Publications that address qualitative mapping of environments are also the basis for this

research, such as (P. E. SANTOS; H. DEE; FENELON, 2008), that presented the theory of

Perceivable Qualitative Relations on Shadows (PQRS) for the construction of qualitative maps,

where the observed space was divided into five regions , based on a logical formalization of
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occlusion and shadow observation. (FOGLIARONI et al., 2009) proposed a model of object

visibility and occlusion to generate the regions in navigable space, while (MCCLELLAND;

CAMPBELL; ESTLIN, 2013) introduced a method for the construction of maps using the

relative positions of reference points. These methods are generally based on human concepts

of space observation, and therefore, are incapable of dealing with sensor noise, limiting their

applicability to controlled and deterministic domains. A comprehensive overview of qualitative

representations for robotic localization is presented by (WOLTER; FREKSA; LATECKI, 2007).

Initially, robotic localization methods based on probabilistic algorithms, defined as

Bayesian filters, were presented in (THRUN, 2002; THRUN; BURGARD; FOX, 2005). This

theme was based on research on Markov localization (FOX; BURGARD; THRUN, 1999) and

localization procedures using Kalman filters (S. Y. CHEN, 2011) with high acceptance in the field

of robotics (DELLAERT et al., 1999). Methods known as Monte Carlo algorithms (DELLAERT

et al., 1999) extend the basic Markov localization by applying a particle filter to represent the

distribution of possible states. Given the robot’s movement, the particles are updated according

to the prediction of the next state and are resized according to the agent’s perception.

(MOR; INDELMAN, 2020) developed a probabilistic QSR for concurrent qualitative

localization and mapping framework designed to be used for large scale navigation with simple

sensors and with low complexity, using a small number of high-quality landmarks, unlike

metric SLAM which is noise sensitive and typically exploits many tracked features to average

noise probabilistic qualitative approach for localization and mapping as well as a probabilistic

composition for propagating information between different landmark triplets. The goal is to

qualitatively describe the environment and the agent’s camera trajectory.

This work formulated the probabilistic inference of camera and landmark triplet qualitative

states with multiple views, incorporating a motion model. Given a motion model for each

camera transition, it is possible to infer the posterior probabilities of a landmark qualitative

state, and camera qualitative trajectory, both in a frame.The system is able to work with a small

number of measurements, and no prior knowledge. Under these conditions, a sampling based

approach to solve the global non-linear small SLAM problem was choosen. This approach

avoids linearization, and gets a global robust solution. Also, integration over coarse resolution

qualitative states compensates some sampling errors (MOR; INDELMAN, 2020).

Considering that two landmark triplets share two common landmarks, information can be

propagated from one to the other. This ”composition” operation enables to enhance estimation
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Figure 22 – Example of camera resection and landmark triangulation.

Source: (MOR; INDELMAN, 2020).

for existing overlapping triplets, and to infer triplets that were not viewed together at all (MOR;

INDELMAN, 2020).

The tests demonstrated that incorporating a motion model in qualitative estimation

improves results. This method can easily be adapted to various types qualitative space partitions,

and different underlying SLAM based methods. Qualitative inference has inherent ability to

accommodate small errors and generate a low compute approximated algorithm, being a practical

alternative for low cost robotic systems or for active planning, in cases where exact metric

location is not important (MOR; INDELMAN, 2020).

3.4 IMAGE INTERPRETATION

The concept of logical approach to image interpretation was initially proposed by

(REITER; MACKWORTH, 1989) through a constraint satisfaction procedure, composed of a set

of three axioms. This system was adapted in (MATSUYAMA; HWANG, 1990) to a reasoning

procedure based on abduction of hypotheses (POOLEV; GOEBEL; ALELIUNAS, 1987) to

generate descriptions of aerial images.

Subsequently, a logical formalism was proposed to rigorously define the transition of

information from the sensors of a mobile robot to symbols representing the existence, location

and shape of the observed objects (SHANAHAN, 1996). In this proposal, scenes were interpreted

from a global point of view, in which objects were always visible. In contrast, the works of
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(P. E. SANTOS; SHANAHAN, 2002; 2003; P. E. SANTOS, 2007) consider changes in a dynamic

environment, observed from an egocentric point of view.

Adding the variable time, the work (HAZARIKA; A. G. COHN, 2002) describes a

system for the assimilation of scenes using the concept of spatiotemporal histories, with the

creation of spatiotemporal regions to represent the temporal development of relations topological

data between physical objects, model based on the proposal of (FERNYHOUGH; A. G. COHN;

HOGG, 2000) for the automatic construction of event models from visual information. In

(BENNETT; A. COHN; MAGEE, 2005), a voting criterion elects the most consistent story to

explain a given sequence of images out of multiple possible stories.

Considering the logic of processes of (BONNER; KIFER, 1994), whose semantics mirror

the process of state transitions occurred in the observations of objects in dynamic scenes, the

work proposed in (M. SANTOS et al., 2009) was based on applying it in a formalism of actions,

as well as the work of (SECOLO; P. E. SANTOS, 2011), with a system capable of interpreting

the depth profile data generated by a simulator of vehicular traffic situations, and suggesting

actions to an autonomous vehicle so that it can interact with safely with other vehicles in the

same environment.

The theory of understanding novel concepts by an agent developed by (FALOMIR; PLAZA,

2020), uses the Concept Blending Theory (CBT) and the CoInvent project computational model of

blending, arguing that understanding a novelty requires not only disintegration and decompression,

given the blend the task to find the input spaces and an adequate generic space, but also a creative

process by the receiver agent that creates a blend in the process, using its own cognitive resources.

The agent understanding proccess involves re-creation rather than reconstruction, not

disintegrating a mental space which does not exist in the receiving agent, if the concept is a novelty.

The mental space of the blend exists in the computational model only after re-constructing

the blending network that yields the blend, when the receiver agent understands that blend

(FALOMIR; PLAZA, 2020).

The top level of communication of internal creative process based on conceptual blending

is necessary to deal with unknown or novel concepts in a blend network created by an agent,

but new or unknown to another agent. This communication level requires the transmission of

signs or descriptions of concepts to enable a creative agent to generate a novelty by means of a

blend network where a new concept is constructed, and then the communication level is used to

transmit a sign about this novelty to a receiver agent (FALOMIR; PLAZA, 2020).

The experiments used the visual Exit sign of Figure 23 to evaluate the bending theory.
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Figure 23 – Icon Example: an arrow shape and a C-like shape.

Source: (MOR; INDELMAN, 2020).

Figure 24 – Location Reference System.

Source: (MOR; INDELMAN, 2020).

The icon was deconstructed into two elements: an arrow shape and a C-like shape, to be

qualitatively described. The arrow shape was qualitative described as:

tail(a,x) ∧ head(a,y) ∧ body(a,x,y) ⇒ arrow(a,x,y).

The C-like shape was qualitative described as:

has− border(a,ba) ∧ has−point(ba,pa) ∧ has− border(c,bc) ∧ has−point(bc,pc) ∧ point−

in − border(pa,bc) ∨ point − in − border(pc,ba) ⇒ touching(a,c)

¬touching(c,a) ⇒ disjoint(a,c)

Figure 24 shows the Location Referent System to obtain the location an object (arrow

shape, for example) with respect to another object (C-like shape).

The complete blend re-creation process is shown in Figure 25.

This work shows that blend generation and understanding requires the same components

and processes. Are they the whole gamut of mental space creation for the two input spaces,
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Figure 25 – Process of undestanding the visual representation of the icon Exit.

Source: (MOR; INDELMAN, 2020).

generic space determination, identifying the commonalities in both input spaces and blend

generation of the two input spaces. To understand a novel or unknown concept, a creative artefact,

is also a creative process in the visual language scenario of icons, pictograms and signage where

meaning can be grounded whenever pre-existing mental spaces can be used to reconstruct such

blending network.

Considering that for the evaluation of image sequences (NAGEL, 2000) some definitions

of probabilistic reasoning are used, without however using logical formalisms, the propose of

using strict definitions of semantics and inference methods in a formalism of Collaborative

Spatial Reasoning to extract spatial information from the images captured by UAVs that enable

the inference of information for environment mapping.

The works referenced in this chapter form the context for the development of this

research project, where the main additional contribution compared to the reference works is the

combination of different qualitative calculus instead of the combination of a qualitative calculus

with probabilistic tecniques.
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4 METHOD

This chapter describes the original contributions of this work.

4.1 PROBLEM DEFINITION

The task of integrating multi-agent systems where robots and humans interact, exchanging

information which can be fast understood by all members of the team is a challenge.

The usage of qualitative formalism enables this exchange of information, specially in an

environment where the transmission of signal can be jeopardized for many reasons. Using purely

quantitative data can impair the assimilation and fast response of humans in a multi-agent team.

On the other hand, qualitative information contain uncertainty.

The theories explained in this chapter relates different qualitative theories, in order to

combine information into a single sentence, so that it is possible to exchange complete information

about objects perceived in an environment, and make it possible to humans and robots to share

knowledge from partial and different points of view.

4.2 LH INTERVAL CALCULUS

Assuming that a system is composed by two or more agents and that one or more of

those agents are humans, the mission to describe the position of objects present at a previously

unknown environment might be impaired without the use of sentences that take into account

the way people are used to describe spatial information. To deal with this issue, LH Interval

Calculus is a formalism extended from Interval Occlusion Calculus (P. E. SANTOS; LIGOZAT;

SAFI-SAMGHABAD, 2015). To qualitatively describe the position of two or more perceived

objects in a scene and how they are related to each other, from various distinct global aerial

points of view. The qualitative description is based on Region Connection Calculus formalism

(D. RANDELL; CUI; A. COHN, 1992) and Allen’s Interval Algebra (ALLEN, 1990).

In this work, the aerial observers are autonomous unmanned aerial vehicles (UAVs)

equipped with a camera, a GPS and a compass. The viewpoint of each UAV is represented as

pairs Σi = (gi, vi), i ∈ N, where gi is the global position of the observer indicated by the GPS,

and vi is a unit vector representing the observer’s direction of flight indicated by the compass.

The observed scenario is read by the cameras installed in the UAVs from right to left and

from top to bottom, and the origin is located in the upper left corner of the scene. The function
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Figure 26 – Grey intervals representing object’s projections from an aerial point of view.

j = image(J ,Σ) maps the objects perceived in the world, where j is the image of an object J ,

seeing from an aerial point of view Σ.

Every observer is able to describe the relations between pairs of objects in its field of

view, and exchange information with each other by means of a message-passing procedure. From

a global aerial viewpoint, the perceived spatial objects can be considered as regions, enabling the

system to extract information about object’s positions applying RCC-8 (D. RANDELL; CUI;

A. COHN, 1992) constraints. However, it is possible to obtain more complete information about

object’s disposition in the environment, taking into account that the system count on more than

one observer. Introducing orientation on a linear axis of reference, the Allen’s relations can be

applied to agents’ viewpoints.

The reference system is positioned in a 2D space, its origin is located in the upper left

corner of the scene, the horizontal line of reference is oriented from right to left (axis x), while

the vertical line of reference is oriented from top to bottom (axis y), in conformity with the

process of reading the scene by the cameras installed in the UAVs. The projections of the shape

of each object in the line axis of reference is considered a layered interval. The layered interval L

is the projection of the shape of the object in the axis of reference x, being L = (x1, x2); x1 < x2,

x1 is the lower limit of the object’s projection on axis x and x2 is the upper limit of the object’s

projection on axis x. The layered interval H is the projection of the shape of the object in the

axis of reference y, being H = (y1, y2); y1 < y2, y1 is the lower limit of the object’s projection on

axis y and y2 is the upper limit of the object’s projection on axis y. Figure 26 shows an example

of objects projections.
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Inspired by the work defined in the Block Algebra (BALBIANI; CONDOTTA; CERRO,

2002), the projections of a pair of objects into the axis x hold one of the 13 basic Allen’s relations,

as well as the projections of the objects into axis y. The results of Allen’s relations constraints in

a 2D scene for a pair of objects I and J are represented by the sentence I (rx, ry) J, where rx is

the Allen relation for the projections of the objects I and J in the axis of reference x and ry is the

Allen relation for the projections of the objects I and J in the axis of reference y.

In this work, the objects are not necessarily blocks, they can be perceived in different

formats, once the relations are given by the projections of the existing interval between the

extreme points of the objects.

Given two distinct objects I and J and their intervals L(I), L(J), H(I) and H(J), the

notation I (rx) J applies iff L(I) < L(J) and I (ry) J applies iff H(I) < H(J). The inverse

situation follows the notation I (-rx) J applies iff L(I) > L(J) and I (-ry) J applies iff H(I) >

H(J).

According to the distance between the observer and the objects, the image projected in a

point of view Σ can be larger or smaller, but their projections on the x and y axis will result in

the same pair of relations (rx, ry).

To illustrate how RCC-8 and Allen’s interval algebra information interact (LIGOZAT,

2013), let’s consider the example of Figure 26, where a DC (disconnected) RCC-8 relation is

identified between objects I and J. For disconnected objects, a precedes or is preceded Allen’s

relation will be detected in the projection of those objects in the axis x or y, or in both axis.

Figure 26 shows the Allen’s relation “overlaps” in axis x and the Allen’s relation “precedes” in

axis y. Therefore, the information obtained is I(o,p)J .

The same reasoning is extended to the EC (externally connected) RCC-8 relation, that

leads to the meets or is met Allen’s relations, detected in the projection of the objects in the

axis x or y. In case two objects are externally connected by one of its corners, the meets or is

met relations can be detected in the projections of both axis.

For PO (partially overlapped) objects, it is expected the Allen’s relations overlaps or

is overlapped projection of the objects in the axis x or y, or in both axis.

The TPP (tangential proper part) objects needs special attention as they stand for

starts and finishes objects projections on axis x or y, while TPPI (tangential proper part

inverse) objects stand for is started and is finished Allen’s relations.

When the RCC-8 relation NTPP (non tangential proper part) is identified between

two objects, the Allen’s relation during is expected to be projected on axis x or y, the relation
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NTPPI (non tangential proper part inverse) leads to the contains Allen’s relations, and

EQ (equal) RCC-8 relation will result in the equal Allen’s relation projected on axis x or y.

To formally define the relations of the LH Interval Calculus in terms of RCC-8 and Allen’s

relations, note that L = (x1, x2); x1 < x2, and H = (y1, y2); y1 < y2. The functions ext(L) and

ext(H) are assumed to map the layered intervals L and H to its extent, delimited by its upper

and lower projected limits: ext(L) = (l1, l2); l1 < l2 and ext(H) = (h1, h2); h1 < h2.

RCC-8 relations are described in capital letters R and Allen’s relations are represented by

r. The definitions below apply to the axis of reference x. The construction of the sentence I (rx,

ry) J results from the application of the constraints below to the object’s projections ext(Li) and

ext(Lj) on axis x to obtain the rx relation.

a) I px J : Σ, read as “I precedes J from Σ” and defined by (I) DC (J) ∩ ext(Li) px

ext(Lj);

b) I -px J : Σ, read as “I is preceded by J from Σ” and defined by (I) DC (J) ∩ ext(Lj)

px ext(Li);

c) I mx J : Σ, read as “I meets J from Σ” and defined by (I) EC (J) ∩ ext(Li) mx ext(Lj);

d) I -mx J : Σ, read as “I is met by J from Σ” and defined by (I) EC (J) ∩ ext(Lj) mx

ext(Li);

e) I ox J : Σ, read as “I overlaps J from Σ” and defined by (I) O (J) ∩ ext(Li) ox ext(Lj);

f) I -ox J : Σ, read as “I is overlapped by J from Σ” and defined by (I) O (J) ∩ ext(Lj)

ox ext(Li);

g) I sx J : Σ, read as “I starts J from Σ” and defined by (I) TPP (J) ∩ ext(Li) sx ext(Lj);

h) I -sx J : Σ, read as “I is started by J from Σ” and defined by (I) TPPI (J) ∩ ext(Lj) sx

ext(Li);

i) I fx J : Σ, read as “I finishes J from Σ” and defined by (I) TPP (J) ∩ ext(Li) fx ext(Lj);

j) I -fx J : Σ, read as “I is finished by J from Σ” and defined by (I) TPPI (J) ∩ ext(Lj)

fx ext(Li);

k) I dx J : Σ, read as “I is during J from Σ” and defined by (I) NTPP (J) ∩ ext(Li) dx

ext(Lj);

l) I -dx J : Σ, read as “I contains J from Σ” and defined by (I) NTPPI (J) ∩ ext(Lj) dx

ext(Li);

m) I eqx J : Σ, read as “I is equal to J from Σ” and defined by (I) EQ (J) ∩ ext(Li) eqx

ext(Lj).
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The application of the constraints below to object’s projections ext(H i) and ext(H j) on

axis y results in the ry relation of the sentence I (rx, ry) J.

a) I py J : Σ, read as “I precedes J from Σ” and defined by (I) DC (J) ∩ ext(Hi) py

ext(Hj);

b) I -py J : Σ, read as “I is preceded by J from Σ” and defined by (I) DC (J) ∩ ext(Hj)

py ext(Hi);

c) I my J : Σ, read as “I meets J from Σ” and defined by (I) EC (J) ∩ ext(Hi) my ext(Hj);

d) I -my J : Σ, read as “I is met by J from Σ” and defined by (I) EC (J) ∩ ext(Hj) my

ext(Hi);

e) I oy J : Σ, read as “I overlaps J from Σ” and defined by (I) O (J) ∩ ext(Hi) oy

ext(Hj);

f) I -oy J : Σ, read as “I is overlapped by J from Σ” and defined by (I) O (J) ∩ ext(Hj)

oy ext(Hi);

g) I sy J : Σ, read as “I starts J from Σ” and defined by (I) TPP (J) ∩ ext(Hi) sy ext(Hj);

h) I -sy J : Σ, read as “I is started by J from Σ” and defined by (I) TPPI (J) ∩ ext(Hj)

sy ext(Hi);

i) I fy J : Σ, read as “I finishes J from Σ” and defined by (I) TPP (J) ∩ ext(Hi) fy

ext(Hj);

j) I -fy J : Σ, read as “I is finished by J from Σ” and defined by (I) TPPI (J) ∩ ext(Hj)

fy ext(Hi);

k) I dy J : Σ, read as “I is during J from Σ” and defined by (I) NTPP (J) ∩ ext(Hi) dy

ext(Hj);

l) I -dy J : Σ, read as “I contains J from Σ” and defined by (I) NTPPI (J) ∩ ext(Hj) dy

ext(Hi);

m) I eqy J : Σ, read as “I is equal to J from Σ” and defined by (I) EQ (J) ∩ ext(Hi) eqy

ext(Hj).

The parameters formalized in the LH Interval Calculus express the qualitative localization

of two or more objects from an aerial point of view in terms of regions, through the RCC-8

relations and in terms of object detection sequence through the Allen’s Algebra.

As already mentioned, each RCC-8 relation has an expected Allen’s relation projection

that can be identified on axis x, y or both. In case the expected relation is identified in only one

axis, any other relation can be identified on the other axis, resulting in a set of possible pairs
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Figure 27 – Set of Allen’s relations for Disconnected objects.

Figure 28 – Set of Allen’s relations for Externally Connected objects.

of Allen’s relations. Figure 27 shows the set of possible Allen’s relations combinations for two

objects identified as Disconnected. The projections on x axis represent the relation precedes,

while the projections on y axis represent the basic Allen’s relations [p,m,o,s,d,f,eq]. The inverse

positions of objects are also valid, for example, the top left square of Figure 27 shows the (p,p)

configuration, but it is possible to have also (p, − p), (−p,p) and (−p, − p) configurations in the

set of Disconnected objects. The same rule is valid for all configurations of the figure.

In case the relation between two objects is defined as Externally Connected, Figure 28

shows the projections of meets configuration on axis x and the set of possible Allen’s relations

projections on y axis, excluding the relation precedes, already showed in Figure 27 to be possible

only for Disconnected objects. Again, the inverse and transverse configurations are possible.

The set of possible Allen’s relations for Partially Overlapped objects is shown in Figure

29, for Tangential Proper Part in Figure 30, the inverse of Tangential Proper Part in

Figure 31 and for Non Tangential Proper Part and its inverse in Figure 32. The Equal

relation identified in RCC-8 constraints will result in the pair (eq,eq) in the LH Interval Calculus,

or, the image will be considered a single object.
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Figure 29 – Set of Allen’s relations for Partially Overlapped objects.

Figure 30 – Set of Allen’s relations for Tangential Proper Part objects.

Figure 31 – Set of Allen’s relations for the inverse of Tangential Proper Part objects.
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Figure 32 – Set of Allen’s relations for Non Tangential Proper Part objects and its inverse
configuration.

Finally, in a scenario composed of two or more objects, the relations between them,

perceived by one or more agents, will be described in the sentence I (rx, ry) J: Σi for each pair of

objects I and J .

The LH Interval Calculus identify the qualitative relations between two objects, associating

two different calculus that take into account the interaction of humans with robots, so that the

information can be delivered and/or read by any member of the team, considering the abstraction

present in the high level information, but maintaining the effectiveness of the messages that need

to be exchanged in a mission of environment recognition.

In real situations of an efficient environment mapping task, the agents fly over different

portions of the region to acquire information, from different directions of flight. It is necessary

the development of a formalism to deal with different viewpoints of the agents as well as a

consistency check for the information exchanged by the UAVs.

The Collaborative Spatial Reasoning for Environment Mapping, first proposed in this

work, is a formalism to reason about objects positions and their qualitative relations, combining

partial fields of view, from different aerial viewpoints. This formalism is introduced in the next

section.

4.3 COLLABORATIVE SPATIAL REASONING FOR ENVIRONMENT MAPPING

The mission of mapping an environment or perform coordinated missions using two or

more agents can be done more efficiently when a team of agents collaborate to scan a single

domain. The partitioning of a region take into account the particular capabilities of the team’s

participants, such as the speed of flight or how wide can the area be covered by sensors, to define

which sub area of the terrain, as well as the width of the area that can be scanned in a given

period of time (DOHERTY et al., 2016).
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Figure 33 – Patterns of scan trajectories.

Figure 34 – Cardinal directions.

Some common patterns of scan trajectories are spirals (Figure 33), expanding squares

and lawnmower, and all of them result in partial views of the region, seen from diverse directions

of flight. To combine the spatial information collected by the agents, the knowledge about the

cardinal direction of flight is necessary. Since in this work it is considered the participation of

humans in the mission of environment mapping, the numerical information delivered by the

drones is translated to a qualitative approach through the Cardinal Direction Calculus (FRANK,

1996).

The cardinal direction indicated by a compass in the case of robotic agents and by human

sense of direction in case of human agents, determines the vector v to represent the flight

orientation of a viewpoint Σ observing the objects in a scene.

To qualitatively classify the set of symbolic directions, the NED (North-East-Down)

geographic frame used in the drones to inform latitude, longitude and height to the operator is

shared in 8 equal cone shaped areas, covering a range of ± 22,5o for each cardinal direction, as

shown on Figure 34. The set of directions is: North (N) = 0o, North East (NE) = 45o, East (E) =

90o, South East (SE) = 135o, South (S) = 180o, South West (SW) = 225o, West (W) = 270o and

North West (NW) = 315o.

From the 3 common patterns of scan trajectories, in this work it is possible to process the

information delivered according to expanding squares or lawnmower methods, where the vector

v changes during the scanning of the area, rotating approximately 90o, 180o or 270o for each part
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of the scanned route. The spiral trajectory is not considered because the vector v changes all the

time, making it impossible to set an equivalence between the information generated by different

agents. The correspondence process enables the system to identify objects positions and their

projections relations on the axis x and y, relative to the first direction of the vector v indicated in

Σ.

Given two agents flying to different directions over the same domain, the information

generated by LH Interval Calculus for two observed objects I and J by each drone is I (rx, ry) J:

Σi, being Σi = (vi,gi). The direction of flight vector vi is added as an index in the relations rx

and ry below just to denote a reference vector, becoming I (virx,viry) J: Σi.

Supposing a first agent flying to a vi direction, and a second agent flying to a vi + 90o

direction, observing the same objects I and J , the correspondence between I (virx,viry) J: Σ1 and

I (vi+90orx , vi+90ory) J: Σ2 is given by

vi+90o
rx = viry

vi+90o
ry = −virx

The notation “ − ” indicates the reverse Allen’s relation. Following the same reasoning,

an observer flying to a vi + 180o direction, observing the same objects I and J as the first agent

flying to a vi direction, the correspondence between I (virx,viry) J: Σ1 and I (vi+180orx , vi+180ory) J:

Σ2 is given by

vi+180o
rx = −virx

vi+180o
ry = −viry

For an observer flying to a vi + 270o direction, observing the same objects I and J as the

first agent flying to a vi direction, the correspondence between I (virx,viry) J: Σ1 and I (vi+270orx ,
vi+270ory) J: Σ2 is given by

vi+270o
rx = −viry
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Figure 35 – Axis of reference’s positions according to agents orientation of flight.

vi+270o
ry = virx

This correspondence analysis works not only for changes in the direction of flight of a

single agent, but also for consistency check, to correctly represent relations between objects

from any point of view. Figure 35 shows that, whether object I (-ox, py) J: Σ1 is perceived by an

agent flying to vi direction, the same scene seen from a Σ2 flying to vi + 180o direction will be

described as I (ox, -py) J: Σ2.

It is important to point out that Allen’s relations during, contain and equal don’t change

when saw from different directions of flight, this way, the inverse relations of the correspondence

rules don’t apply to during, contain and equal. One object during, containing or equal another

one will keep its relation independent of the viewpoint, the change will happen only in the axis x

or y where these relations will be identified. The relation “start” is the inverse relation of “finish”,

“is started” is the inverse relation of “is finished”, and vice versa.

Up to now it is being considered objects in the viewpoint of the agents. To combine

2 or more fields of view, the Collaborative Spatial Reasoning applies the concept of RCC-8

Composition Table developed by (D. RANDELL; CUI; A. COHN, 1992) and Allen’s Composition

Table developed by (ALLEN, 1990). The combination process is described in the next subsection.

4.3.1 Partial View Combination in Collaborative Spatial Reasoning

In this work, a terrain contains the objects to be identified, as buildings of different sizes,

cars of different colors and an airplane. The complete domain can be scanned by two or more
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agents, being each agent responsible to fly over a portion of the terrain. The size of this portion

is defined according to the capabilities of each agent, as speed of flight and the resolution of the

cameras installed in the drones. The portion scanned by each agent provides a partial view of the

environment.

To reason about objects that are not in the agent’s field of view, the composition tables

express the implications obtained by the composition of each pair of basic relation, in this work,

RCC-8 and Allen’s Interval Algebra domains. In case 2 or more different agents detect at least

one object in common, it is possible to infer information about objects that are not in their field

of view, through the concept of composition.

To identify if one object was already detected or not, a labeling system is used to tag every

object detected by each agent, based on the GPS position showed in the moment when the object

is perceived by the agent. Object detection is part of this work, but it is not its focus. Therefore,

an off-the-shelf software for object detection and tagging is used to identify the objects perceived

in a scene and label them so that different agents can share objects’ information and reason

about them. When every object is identified and tagged, this information is shared between all

members of the team, making it possible to combine the partial view of the agents and guarantee

the consistency of the information that each agent delivers to the system.

The consistency check is made through a constraint network pair (N,C), being N the set

of vertices where each domain element is represented by a vertex, and C representing a set of

constraints, to verify the existence of a consistent scenario by imposing algebraic closure on

the network of constraints, to confirm whether the configurations provided by the information

from the agents are feasible in at least one scenario of a domain (P. E. SANTOS; LIGOZAT;

SAFI-SAMGHABAD, 2015). In this work it is considered two domains: one defined by the set

of RCC-8 constraints and a second one defined by the set of Allen’s relations constraints.

A network (N,C) is algebraically closed if its three vertices (i, j, k) ∈ N 3, and is consistent

with the composition

C(i,j) ⊆ C(i,k) ◦ C(k,j) (LIGOZAT, 2013). This concept is the basis for the combination of the

partial view of each agent to describe a single domain, where one agent scans part of the terrain

and detects the objects I and K, and a second agent scans the remaining part of the terrain and

detects the objects K and J , the Collaborative Spatial Reasoning combine the information about

objects to get the relation of the objects I and J , regarding to the RCC-8 and Allen’s relations,

delivering the information under the same frame of LH Interval Calculus, i.e., I (rx, ry) J: Σi, and

complying the same constraints.
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Table 4 – RCC-8 Composition Table.

R2(b,c)
R1(a,b) DC EC PO TPP TPPI EQ NTPP NTPPI
DC DC, EC, DC, EC, DC, EC, DC, EC, DC DC DC, EC, DC

PO, TPP, PO, TPP, PO, TPP, PO, TPP, PO, TPP,
TPPI, EQ, NTPP NTPP NTPP NTPP

NTPP,
NTPPI

EC DC, EC, DC, EC, DC, EC, EC, PO, DC, EC EC PO, TPP, DC
PO, TPPI, PO, TPPI, PO, TPP, TPP, NTPP

NTPPI TPPI, EQ NTPP NTPP
PO DC, EC, DC, EC, DC, EC, PO, TPP, DC, EC, PO PO, TPP, DC, EC,

PO, TPPI, PO, TPPI, PO, TPP, NTPP PO, TPPI NTPP PO, TPPI,
NTPPI NTPPI TPPI, EQ, NTPPI

NTPP,
NTPPI

TPP DC DC, EC DC, EC, TPP, DC, EC, TPP NTPP DC, EC,
PO, TPP, NTPP PO, TPP, PO, TPPI,

NTPP TPPI, EQ NTPPI
TPPI DC, EC, EC, PO, PO, TPPI, PO, TPP, TPPI, TPPI PO, TPP, NTPPI

PO, TPPI, TPPI, NTPPI TPPI, EQ NTPPI NTPP
NTPPI NTPPI

EQ DC EC PO TPP TPPI EQ NTPP NTTPI
NTPP DC DC DC, EC, NTPP DC, EC, NTPP NTPP DC, EC,

PO, TPP, PO, TPP, PO, TPP,
NTPP NTPP TPPI, EQ,

NTPP,
NTPPI

NTPPI DC, EC, PO, TPPI, PO, TPPI, PO, TPPI, NTPPI NTPPI PO, TPP, NTPPI
PO, TPPI, NTPPI NTPPI NTPPI TPPI, EQ,

NTPPI NTPP,
NTPPI

Source: (D. RANDELL; CUI; A. COHN, 1992).

The composition of the relations follows the RCC-8 Composition Table developed by

(D. RANDELL; CUI; A. COHN, 1992) and Allen’s Composition Table developed by (ALLEN,

1990). Table 4 represents the disjunction of RCC-8 relations resulting from the composition of

each pair of basic RCC-8 relation. Table 36 shows the composition table of Allen’s relations.

Keeping in mind that each RCC-8 relation has an expected Allen’s relation projection

identified on axe x, y, or both, the resulting composition of the relations between two pairs of

regions I and K, and K and J , to infer the relation of a third pair I and J , will lead to an Allen’s

relation resulting from the composition of the projections of this third pair.

In this work, each pair of objects has a pair of Allen’s relations (rx, ry) representing the

relation of the projections of objects’ intervals into axis x and y. To combine partial views,

the Collaborative Spatial Reason applies the concept developed by (BALBIANI; CONDOTTA;
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Figure 36 – Allen’s Composition Table
(ALLEN, 1990)

CERRO, 1998), defining that the composition of pairs of Allen’s relations is given by

(A,B) ◦ (C,D) = (A ◦ C) X (B ◦ D),

being A and C a set of relations rx and B and D a set of relations ry. The reasoning for

Allen’s composition table is analogous to that used in RCC-8 composition table.

Supposing that the information captured by Σ1 shows two objects A and B and their

relation is PO. Σ2 shows two objects B and C and their relation is DC. Σ1 and Σ2 are flying

to the same direction vi. The relations of the projections of the objects A and B on axis x and

y is the pair (d,o). The relations of the projections of the objects B and C is the pair (p,-m).

According to the composition table of Figure 4, PO ◦ DC = (DC, EC, PO, TPPI,NTPPI), that

are the possible relations for the objects A and C. The composition of the pairs

(d, o) ◦ (p,-m) = (p) x (-o, -s, -d) = ((p,-o), (p,-s), (p,-d)),

according to the composition table of Figure 36, that shows the set of possible pairs of relations

of the projections of the objects A and C. As the results show that the projections on axis x is

precedes for the three possible pairs of relations, it is possible to deduce that the objects A and C

are Disconnected, and its projections on axis x and y can be the relations ((p,-o), (p,-s), (p,-d)).
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5 EXPERIMENTS

The experiments described in this chapter were performed aiming at evaluating the LH

Interval Calculus and the Collaborative Spatial Reasoning theories. Three aerial navigation were

performed by two UAVs to collect real environment information using cameras.

5.1 DOMAIN

Two different UAV platforms were used to execute the experiments. The first one is a DJI

Matrice 600 Pro1 research platform presented in Figure 9. It has the maximum takeoff weight of

15.1 kg with the maximum payload of 5.5 kg. Its largest dimension is approximately 1.6 meters.

The second platform is a DJI Matrice 100 2 presented in Figure10. It has the maximum takeoff

weight of 3.6 kg, with maximum payload capacity of approximately 1 kg. It’s tip-to-tip length is

1 meter.

Figure 37 – DJI Matrice 600 Pro experimental platform.

Both platforms are equipped with Intel NUC computers using Core i7-7567U processors,

16 GB of memory, and 500 GB SSD storage.

Three real data collection flights were performed at Motala Flygklubb, Sweden. The DJI

Zenmuse Z33 cameras were used to collect video and images during the experimental flights.

The collected video was of 1080p resolution, and the images were of size 4000×2250 pixels. The

UAV’s positions, altitudes and cardinal direction of flight were logged as well as ROS bag files.
1www.dji.com/matrice600/info
2www.dji.com/matrice100
3www.dji.com/zenmuse-z3

www.dji.com/matrice600/info
www.dji.com/matrice100
www.dji.com/zenmuse-z3
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5.1.1 Environment Description

The data collection took place at Motala Flygklubb (Figure 39), Sweden, during the

author’s visit at Linköping University in 2018. The Flyklubb is a non-profit association for motor

and gliders airplanes, founded in 1967. The club is used in the works for the development and

popularization of non-commercial aviation.

It was considered 14 objects present in the Flygklubb area at the moment of the data

collection flights. They are: 7 buildings of different sizes and colors, 5 cars, 1 van and 1 airplane.

The background contains areas covered by grass, asphalt, trees and a road.

5.1.2 Data Collection Flight

The scanning patterns flight to collect the real experimental data were automatically

generated to cover a designated area, defined by the perimeter allowed to drone flights at Motala

Flygklubb. The platforms were positioned at the grass, in the right side of the picture showed in

Figure 39, in a region proper for departure. The UAVs took off manually and after reaching a safe

altitude flown autonomously over the region and performed the lawnmower scan according to the

pre-determinate altitude. The flights were performed by each UAV at three different altitudes:

30, 50 and 80 meters above the ground level (AGL).

The videos and photos collected register a partial top view of the environment and were

taken while the UAVs flew to different directions, to show partial perspectives of each scene. Each

drone flew over a particular portion of the area, capturing images of some objects in common in

order to use those objects as references to infer the position of other objects that were not in its

field of view.

Figure 38 – DJI Matrice 100 experimental platform.
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Figure 39 – Motala Flygklubb scenario

89 pictures were obtained by the UAVs flying at 30 meters, 65 pictures at 50 meters and

69 pictures at 80 meters, adding up 223 pictures. The pictures were taken at every 5 seconds

from takeoff to landing.

It was also recorded 6:51 minutes of video movie of the 30 meters flight, 5:48 minutes

of the 50 meters flight and 5:56 minutes of the 80 meters flight. The videos and pictures were

recorded in the memory cards of the drones.

5.2 LH INTERVAL CALCULUS EVALUATION

The objective of the experiments described in this section is to verify if the system is able

to deliver the correct RCC and Allen’s relations that composes the LH Interval Calculus theory

using different methods of object identification.

Figure 39 shows the environment and the 14 objects considered in the LH Interval Calculus

evaluation. Based in Figure 39, a gold standard table was created by the author, observing and

annotating the LH Interval Calculus relations, to serve as a comparison to the answers of the LH

Interval Calculus algorithm.

The first experiment employing the pictures collected were done using the VGG Image

Annotator (VIA) (DUTTA; ZISSERMAN, 2019), a simple and standalone manual annotation
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software for image, audio and video. VIA is an open source project based solely on HTML,

Javascript and CSS (no dependency on external libraries). VIA is developed at the Visual

Geometry Group (VGG) and released under the BSD-2 clause license which allows it to be useful

for both academic projects and commercial applications.

The identification of the objects detected in the scene was done manually, outlining the

object within a rectangle. From the total amount of 223 pictures, a set of 102 images was chosen

because they contain two or more objects in the scene. After the annotation of the objects present

in the 102 pictures, the QSRlib4 library was used to allow computation of the Qualitative Spatial

Relations. LH Interval Calculus algorithm was developed in Python which makes calls to QSRlib

in order to abstract the input data and form a qualitative representation of the perceived world

scene.

A second method of object detection was tested. The Yolo V5 5 is Deep Neural Network

focused on detecting objects in scenes, with architectures and models pre-trained on the COCO

data set. YOLO is an acronym for ’You only look once’, due to its algorithm that divides images

into a grid system. Each cell in the grid is responsible for detecting objects within itself. The

training data set of Yolo V5 has 80 classes, more than 1.500 images per class and about 10.000

labeled objects per class. The object detection is a tool for this work and not its focus, so the Yolo

V5 trained data set was enough to detect the bounding boxes of the 14 objects of the experiment.

Each noted rectangle (manually or automatic) present in the scene is considered an object.

The horizontal lines of the rectangle represent the dimension and localization of the object in

the axis x and the vertical lines of the rectangle represent the dimension and localization of the

object in the axis y.

The output of the algorithm is a qualitative relation for the objects in the axis x and a

qualitative relation in the axis y.

5.2.1 Evaluation Method

The parameter to evaluate the LH Interval Calculus is the accuracy of the algorithm

response for the whole process: get information of the objects identified in VGG and Yolo V5

from an agent point of view, identify RCC relations and identify Allen’s Interval Algebra Relation

projected in the axis x and y. The output is compared to the gold standard table, defined as the
4https://qsrlib.readthedocs.io/en/latest/index.html
5https://github.com/ultralytics/yolov5

https://qsrlib.readthedocs.io/en/latest/index.html
https://github.com/ultralytics/yolov5
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Figure 40 – VGG object identification and labels

true base of knowledge. The gold standard table comprises all possible qualitative relations

between the 14 objects to each other, and was created manually by an expert.

The accuracy is the proportion of correct results, among all the results and is given by the

formula:

accuracy = correct results

all results
(1)

This method was applied to the LH Interval Calculus as well as to the Collaborative

Spatial Reasoning evaluation. The result is considered correct when the output of the algorithm

shows the same relations of the gold standard table and considered incorrect when the output

shows any other relation.
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Figure 41 – Yolo V5 object identification and labels

5.2.2 LH Interval Calculus Results

The gold standard table considers all RCC and Allen’s relations possible to the 14 objects

each other (Object1 and its relations to Object2, Object3, Object4 and so on, Object2 and its

relations to Object1, Object3, Object4 and so on, till Object14 and its relations to Object1,

Object2, Object3 and so on), adding up 364 pairs of relations, being 182 RCC relations and 182

Allen’s relations, with the UAV flying to North cardinal direction. Figure 40 shows the 14 objects

and its labels.

The values used in the algorithm that makes calls to the QSRlib are the medium position

of each rectangle in the axis x and y, and the rectangle extent in the axis x and y. These coordinates

give the position of the rectangle and hence the position of the object that the rectangle represents.

The QSRlib algorithm gives two outputs for each pair of objects. The first one is the RCC relation

and the second one is the Allen’s relation for the object in the axis x and y. The combination of

these two outputs is tested according to the constraints that define the LH Interval Calculus and

were presented in Section 4.2.

The 102 images have from 2 to 11 different objects in the environment. The total amount

of LH Interval Calculus sentences extracted from the 102 images is 996. Table 6 shows 5
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Table 5 – Accuracy for LH Interval Calculus relations between the objects at Motala Flygklubb.

Objects Object1 Object2 Object3 Object4 Object5 Object6 Object7

Accuracy 92% 77% 77% 85% 69% 69% 77%

Objects Object8 Object9 Object10 Object11 Object12 Object13 Object14

Accuracy 77% 92% 85% 85% 85% 23% 0%

sentences of example for each object, demonstrating the expected results x obtained results,

because to show the 996 sentences was considered unnecessary.

The VGG identification of the objects resulted in 100% of correct responses comparing

to the gold standard table, because the rectangle outlining each object present in the scene was

done manually and contains only the object itself, discarding shadows or any background.

The automatic object identification using Yolo V5 offered a different result. The shadow

of all objects were identified as part of the object by Yolo V5 algorithm (Figure 41). Besides

this, the black roof of the Object6 is a balcony, part of the building, but was excluded from the

rectangle that surrounds the object. The Object13 is composed by two buildings. One is covered

by the black roof with the letters "DZ" and the other is covered by the red and gray roof, but they

were identified as a single object. Consequently, Object14 was not identified anyway.

The RCC relations obtained using Yolo V5 object identification are correct because the

rectangles remain "disconnected" from each other, despite the problems already mentioned. The

Allen’s relations presented some incorrect responses, to be analyzed below.

Table 5 shows the accuracy of the responses of the LH Interval Calculus to the 14 objects

present at Motala Flugklubb (Figure 41), regarding RCC relations between the objects present in

the images captured by the UAVs and identification of Allen’s Interval Algebra Relation projected

in the axis x and y.

LH Interval Calculus presented 92% of accuracy for the relations between Object1, an

airplane, and the others 13 objects of the scene. This means that for all images where Object1

was identified, 92% of the relations between Object1 and any other objects identified in the scene

is correct. The 8% of wrong answers refers to the relations between Object1 and Object14, not

identified by Yolo V5 algorithm.

Object2 and Object3, are small buildings, and presented 77% of accuracy for the LH

Interval Calculus sentences. The 23% of incorrect responses showed up in the relations with
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Table 6 – LH Interval Calculus Expected Results x Obtained Results

Object1

Expected Obtained

Obj1,Obj13:(DC: ’-p,p’) Obj1,Obj13:(DC: ’-p,p’)
Obj1,Obj10:(DC: ’-p,p’) Obj1,Obj10:(DC: ’-p,p’)
Obj1,Obj5:(DC: ’-p,d’) Obj1,Obj5:(DC: ’-p,d’)
Obj1,Obj4:(DC: ’-p,-d’) Obj1,Obj4:(DC: ’-p,-d’)
Obj1,Obj14:(DC: ’-p,p’) ∅

Object2

Expected Obtained

Obj2,Obj1:(DC: ’p,p’) Obj2,Obj1:(DC: ’p,p’)
Obj2,Obj14:(DC: ’-o,p’) ∅
Obj2,Obj10:(DC: ’-p,p’) Obj2,Obj10:(DC: ’-p,p’)
Obj2,Obj5:(DC: ’-p,p’) Obj2,Obj5:(DC: ’-p,o’)
Obj2,Obj13:(DC: ’-p,p’) Obj2,Obj13:(DC: ’-o,p’)

Object3

Expected Obtained

Obj3,Obj1:(DC: ’p,p’) Obj3,Obj1:(DC: ’p,p’)
Obj3,Obj14:(DC: ’d,p’) ∅
Obj3,Obj10:(DC: ’-p,p’) Obj3,Obj10:(DC: ’-p,p’)
Obj3,Obj5:(DC: ’-p,p’) Obj3,Obj5:(DC: ’-p,o’)
Obj3,Obj13:(DC: ’-p,p’) Obj3,Obj13:(DC: ’d,p’)

Object4

Expected Obtained

Obj4,Obj13:(DC: ’-p,p’) Obj4,Obj13:(DC: ’d,p’)
Obj4,Obj9:(DC: ’-p,p’) Obj4,Obj9:(DC: ’-p,p’)
Obj4,Obj3:(DC: ’p,-p’) Obj4,Obj3:(DC: ’p,-p’)
Obj4,Obj2:(DC: ’p,-p’) Obj4,Obj2:(DC: ’p,-p’)
Obj4,Obj12:(DC: ’-p,p’) Obj4,Obj12:(DC: ’-p,p’)

Object14, Object13 and Object5 as shown in Table 6. As Object14 was not identified, Object13



77

Object5

Expected Obtained

Obj5,Obj13:(DC: ’-o,p’) Obj5,Obj13:(DC: ’d,p’)
Obj5,Obj3:(DC: ’p,-p’) Obj5,Obj3:(DC: ’p,-o’)
Obj5,Obj2:(DC: ’p,-p’) Obj5,Obj2:(DC: ’p,-o’)
Obj5,Obj12:(DC: ’d,p’) Obj5,Obj12:(DC: ’d,p’)
Obj5,Obj6:(DC: ’p,p’) Obj5,Obj6:(DC: ’p,p’)

Object6

Expected Obtained

Obj6,Obj2:(DC: ’p,-p’) Obj6,Obj2:(DC: ’p,-p’)
Obj6,Obj12:(DC: ’-o,p’) Obj6,Obj12:(DC: ’-o,p’)
Obj6,Obj11:(DC: ’-p,p’) Obj6,Obj11:(DC: ’-p,o’)
Obj6,Obj7:(DC: ’p,o’) Obj6,Obj7:(DC: ’p,o’)

Obj6,Obj8:(DC: ’-p,-o’) Obj6,Obj8:(DC: ’-p,-p’)
Object7

Expected Obtained

Obj7,Obj10:(DC: ’-p,-p’) Obj7,Obj10:(DC: ’-p,-o’)
Obj7,Obj5:(DC: ’-p,-p’) Obj7,Obj5:(DC: ’-p,-p’)
Obj7,Obj4:(DC: ’o,-p’) Obj7,Obj4:(DC: ’o,-p’)
Obj7,Obj13:(DC: ’-p,p’) Obj7,Obj13:(DC: ’d,p’)
Obj7,Obj9:(DC: ’-p,-p’) Obj7,Obj9:(DC: ’-p,-p’)

Object8

Expected Obtained

Obj8,Obj13:(DC: ’o,p’) Obj8,Obj13:(DC: ’d,p’)
Obj8,Obj3:(DC: ’p,-p’) Obj8,Obj3:(DC: ’p,-p’)
Obj8,Obj2:(DC: ’p,-p’) Obj8,Obj2:(DC: ’p,-p’)
Obj8,Obj12:(DC: ’d,p’) Obj8,Obj12:(DC: ’d,p’)
Obj8,Obj6:(DC: ’p,p’) Obj8,Obj6:(DC: ’p,o’)

is considered bigger than it really is, so, the is overlapped relation for the object projections on

axis x of the output sentence Object2,Object13(DC:-ox, py): Σ1 is inconsistent.

A correct bounding box around Object13 should satisfy the following sentence: Object2

DC Object13 ∩ ext(L13) px ext(L2).
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Object9

Expected Obtained

Obj9,Obj6:(DC: ’p,d’) Obj9,Obj6:(DC: ’p,d’)
Obj9,Obj11:(DC: ’-p,p’) Obj9,Obj11:(DC: ’-p,p’)
Obj9,Obj7:(DC: ’p,p’) Obj9,Obj7:(DC: ’p,p’)
Obj9,Obj8:(DC: ’o,-p’) Obj9,Obj8:(DC: ’o,-p’)
Obj9,Obj4:(DC: ’p,-p’) ∅

Object10

Expected Obtained

Obj10,Obj12:(DC: ’d,p’) Obj10,Obj12:(DC: ’d,p’)
Obj10,Obj6:(DC: ’p,d’) Obj10,Obj6:(DC: ’p,d’)

Obj10,Obj11:(DC: ’-p,p’) Obj10,Obj11:(DC: ’-p,p’)
Obj10,Obj7:(DC: ’p,o’) Obj10,Obj7:(DC: ’p,p’)

Obj10,Obj8:(DC: ’-o,-p’) Obj10,Obj8:(DC: ’-o,-p’)
Object11

Expected Obtained

Obj11,Obj9:(DC: ’p,-p’) Obj11,Obj9:(DC: ’p,-p’)
Obj11,Obj3:(DC: ’p,-p’) Obj11,Obj3:(DC: ’p,-p’)
Obj11,Obj2:(DC: ’p,-p’) Obj11,Obj2:(DC: ’p,-p’)
Obj11,Obj12:(DC: ’p,o’) Obj11,Obj12:(DC: ’p,o’)
Obj11,Obj6:(DC: ’p,-p’) Obj11,Obj6:(DC: ’p,-o’)

Object12

Expected Obtained

Obj12,Obj5:(DC: ’-d,-p’) Obj12,Obj5:(DC: ’-d,-p’)
Obj12,Obj4:(DC: ’p,-p’) Obj12,Obj4:(DC: ’p,-p’)
Obj12,Obj13:(DC: ’o,p’) Obj12,Obj13:(DC: ’-d,p’)
Obj12,Obj9:(DC: ’-d,-p’) Obj12,Obj9:(DC: ’-d,-p’)
Obj12,Obj3:(DC: ’p,-p’) Obj12,Obj3:(DC: ’p,-p’)

As the bounding box for Object13 identification is bigger in axis x than it should be, the

sentence satisfied is the following: Object2 O Object13 ∩ ext(L13) ox ext(L2).
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Object13

Expected Obtained

Obj13,Obj1:(DC: ’p,-p’) Obj13,Obj1:(DC: ’p,-p’)
Obj13,Obj10:(DC: ’-d,-p’) Obj13,Obj10:(DC: ’-d,-p’)
Obj13,Obj5:(DC: ’-d,-p’) Obj13,Obj5:(DC: ’o,-p’)
Obj13,Obj4:(DC: ’-d,-p’) Obj13,Obj4:(DC: ’p,-p’)
Obj13,Obj9:(DC: ’-o,-p’) Obj13,Obj9:(DC: ’-o,-p’)

Object14

Expected Obtained

Obj14,Obj3:(DC: ’-d,-p’) ∅
Obj14,Obj2:(DC: ’o,-p’) ∅

Obj14,Obj12:(DC: ’-o,-p’) ∅
Obj14,Obj6:(DC: ’-d,-p’) ∅
Obj14,Obj11:(DC: ’-p,-p’) ∅

The same reasoning applies to Object5, identified as bigger than it really is on axis y due

to its shadow. The sentence that should be satisfied is Object2 DC Object5 ∩ ext(H2) py ext(H5)

instead of Object2 O Object5 ∩ ext(H2) oy ext(H5).

Object4, a car, has 85% of accuracy in the LH Interval Calculus responses. The 15%

of inconsistencies refers to the relations between Object4, Object13 and Object14 for the same

reasons explained in the paragraph above. Object4 DC Object13 ∩ ext(L13) px ext(L4) is the

sentence that should be satisfied.

Object5, a medium sized building, presented an accuracy of 69% due to its rectangle of

identification which takes into account the building’s shadow. 31% of the LH Interval Calculus

inconsistent sentences are related to Object2, Object3, Object13 and Object14, for the same

reasons exposed above.

Object6 is also a medium sized building, but the rectangle that outlines the object is

smaller than the object. The balcony of the building was left outside the annotation while the

shadow of the building was included. These facts leads to an accuracy of 69% for the LH Interval

Calculus. The 31% of the relations that presented problems refers to Object13, Object14, Object8

and Object11. The inconsistency of the relation with Object8 appears due to the inclusion of the

building’s shadow in the annotation and the problem with Object11 due to the balcony exclusion.
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The correct sentence that should be satisfied for Object6 and Object8 position is Object6 DC

Object8 ∩ ext(H8) py ext(H6). For Object6 and Object11, the sentence Object6 O Object11 ∩

ext(H6) oy ext(H11) is the sentence that should be satisfied.

Object7 is a van, and presented an accuracy of 77%. The 23% of inconsistent sentences

refers to Object7 relations to Object13, Object14 and Object10. Again, the inclusion of the

shadow of the van in the rectangle of object identification caused the inconsistency. The target

sentence that should be satisfied is Object7 DC Object10 ∩ ext(H10) py ext(H7).

Object8 is a car and its accuracy in the LH Interval Calculus is 77%. Over again Object13

and Object14 didn’t contribute to consistent outputs as well as Object6, due to is shadow included

in the annotation rectangle. To be succinct, the sentence for Object8 regarding to Object6 is

complementary to the sentence demonstrated in the paragraph describing Object6, keeping in

mind that if Object6 is preceded by Object8, Object8 precedes Object6.

Object9 is also a car. Its accuracy is 92%. The only problem is the relation with Object14,

not identified by Yolo V5.

Object10, another car, presented an accuracy of 85% in its relations with the objects

considered in this experiment. The 15% of inconsistencies are related to Object14 and Object7,

already explained. The sentence for Object10 and Object7 is the complementary of Object7 and

Object10.

Object11 represents a car and presented an accuracy of 85% for LH Interval Calculus.

15% of incorrect sentences refer to the relation with Object14 and Object6, as explained above.

Object12 is a big building, and its accuracy is 85%. The Object13 and Object14, are

responsible for the 15% of inconsistencies.

Object13 is another big building, with 23% of accuracy in the LH Interval Calculus,

followed by Object14 with 0%.

The global accuracy of the LH Interval Calculus using automatic annotation of objects

is 77%. This result shows that qualitative spatial reasoning can assimilate some imprecision

in the object identification. On the other hand, when the object outline identification is largely

imprecise, the inconsistencies are unavoidable.

The next section will describe the discussion about the imprecision at LH Interval Calculus

and its consequences for the Collaborative Spatial Reasoning.
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5.3 COLLABORATIVE SPATIAL REASONING EVALUATION

The input data for the Collaborative Spatial Reasoning system are the results of the

LH Interval Calculus. To combine two partial fields of view that complement each other, the

information about the cardinal direction of flight becomes necessary. As demonstrated in Section

4.3, Figure 35, there is a correspondence position according to agents orientation of flight. As

the scan pattern performed in the experiment was the lawnmower (Figure 33), the agents flew

following the North, East, South and West directions, according to the information registered by

the compass of the drones and available for conference in the bag file.

First of all, the LH Interval Calculus qualitative relations responses were normalized to

North direction of flight, as explained in Section 4.3, Figure 35. The images that had at least one

object in common were used to test the Collaborative Spatial Reasoning algorithm, aiming at a

partial view combination of two images, to infer information about objects not present in both

images. Each object has a RCC relation and a pair of Allen’s relations, projected in the axis x

and y. The RCC relation of each pair of objects in common in a picture results in a set of one or

more possible relations for a third object, given by the composition table rules for RCC (Figure

4). The same method of composition is applied to the axis x and axis y relations of the pair of

objects, submitted to the composition table of Allen’s relations (Figure 36).

As explained in Section 4.2, each RCC relation interacts with 2 Allen’s relations. So, a

cross check is done between the results of the RCC composition table and Allen’s composition

table to compose the location of the third object related to the two first ones. Only the set of

relations that agrees with the RCC and Allen’s relations interactions are considered in the final

result.

5.3.1 Collaborative Spatial Reasoning Results

From 102 images showing two or more objects in the scene, 30 were chosen to test the

Collaborative Spatial Reasoning theory. All relations between the objects is normalized to the

North direction view according to the correspondence analyses explained in Section 4.3. In these

30 images, all 14 objects are present in the scene at least once.

The result of a partial view combination of 2 images with one object in common, in the

most cases, is a set of possible relations between the objects that don’t appear in both images.

Table 7 shows examples of partial view images combination with one object present in both

images and the inference information about a third object.
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Table 7 – Collaborative Spatial Reasoning inference for two images with one object in common

Obj Pair Image 1 Obj Pair Image 2 Expected Result Obtained Result

Obj2,Obj1: Obj1,Obj4: Obj2,Obj4: Obj2,Obj4:
(DC: ’p,p’) (DC: ’-p,-d’) (DC: ’-p,p’) DC:[(’p’, ’p’),

(’m’, ’p’), (’o’, ’p’),
(’s’, ’p’), (’d’, ’p’),
(’-f’, ’p’), (’eq’, ’p’),
(’f’, ’p’),(’-d’, ’p’),
(’-s’, ’p’), (’-o’, ’p’),
(’-m’, ’p’),
(’-p’, ’p’)]

Obj14,Obj13: Obj13,Obj7: Obj14,Obj7: Obj14,Obj7:
(DC: ’m,d’) (DC: ’-d,-p’) (DC: ’p,-p’) DC:[(’p’, ’-p’)]

Obj5,Obj10: Obj10,Obj11: Obj5,Obj11: Obj5,Obj11:
(DC: ’-p,p’) (DC: ’-p,p’) (DC: ’-p,p’) DC:[(’-p’, ’p’)]

Obj4,Obj5: Obj5,Obj8: Obj4,Obj8: Obj4,Obj8:
(DC: ’-p,d’) (DC: ’-p,o’) (DC: ’-p,p’) DC:[(’-p’, ’p’),

(’-p’, ’m’), (’-p’, ’o’),
(’-p’, ’s’), (’-p’, ’d’)]

Obj6,Obj4: Obj4,Obj1: Obj6,Obj1: Obj6,Obj1:
(DC: ’p,-p’) (DC: ’p,d’) (DC: ’p,-p’) DC:[(’p’, ’d’),

(’p’, ’f’), (’p’, ’-o’),
(’p’, ’-m’), (’p’, ’-p’)]

Obj12,Obj14: Obj14,Obj13: Obj12,Obj13: Obj12,Obj13:
(DC: ’-d,p’) (DC: ’m,d’) (DC: ’o,p’) DC:[(’o’, ’p’), (’o’, ’m’),

(’o’, ’o’), (’o’, ’s’),
(’o’, ’d’), (’-f’, ’p’),
(’-f’, ’m’), (’-f’, ’o’),
(’-f’, ’s’), (’-f’, ’d’),
(’-d’, ’p’), (’-d’, ’m’),
(’-d’, ’o’), (’-d’, ’s’),
(’-d’, ’d’)]

Obj11,Obj9: Obj9,Obj5: Obj11,Obj5: Obj11,Obj5:
(DC: ’p,-p’) (DC: ’p,-p’) (DC: ’p,-p’) DC:[(’p’, ’-p’)]

Obj2,Obj3: Obj3,Obj4: Obj2,Obj4: Obj2,Obj4:
(DC: ’-p,d’) (DC: ’-p,p’) (DC: ’-p,p’) DC:[(’-p’, ’p’)]

Obj1,Obj2: Obj2,Obj5: Obj1,Obj5: Obj1,Obj5:
(DC: ’-p,-p’) (DC: ’-p,p’) (DC: ’-p,d’) DC:[(’-p’, ’p’),

(’-p’, ’m’), (’-p’, ’o’),
(’-p’, ’s’), (’-p’, ’d’),
(’-p’, ’-f’), (’-p’, ’eq’),
(’-p’, ’f’), (’-p’, ’-d’),
(’-p’, ’-s’), (’-p’, ’-o’),
(’-p’, ’-m’), (’-p’, ’-p’)]
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Obj Pair Image 1 Obj Pair Image 2 Expected Result Obtained Result

Obj14,Obj12: Obj12,Obj6: Obj14,Obj6: Obj14,Obj6:
(DC: ’d,-p’) (DC: ’o,-p’) (DC: ’p,-p’) DC:[(’p’, ’-p’),

(’m’, ’-p’), (’o’, ’-p’),
(’s’, ’-p’), (’d’, ’-p’)]

Obj7,Obj6: Obj6,Obj1: Obj7,Obj1: Obj7,Obj1:
(DC: ’-p,-o’) (DC: ’p,-p’) (DC: ’p,-p’) DC:[(’p’, ’-p’),

(’m’, ’-p’), (’o’, ’-p’),
(’s’, ’-p’), (’d’, ’-p’),
(’-f’, ’-p’), (’eq’, ’-p’),
(’f’, ’-p’), (’-d’, ’-p’),
(’-s’, ’-p’), (’-o’, ’-p’),
(’-m’, ’-p’), (’-p’, ’-p’)]

Obj8,Obj11: Obj11,Obj13: Obj8,Obj13: Obj8,Obj13:
(DC: ’-p,p’) (DC: ’p,p’) (DC: ’o,p’) DC:[(’p’, ’p’),

(’m’, ’p’), (’o’, ’p’),
(’s’, ’p’), (’d’, ’p’),
(’-f’, ’p’), (’eq’, ’p’),
(’f’, ’p’), (’-d’, ’p’),
(’-s’, ’p’), (’-o’, ’p’),
(’-m’, ’p’), (’-p’, ’p’)]

Obj12,Obj7: Obj7,Obj4: Obj12,Obj4: Obj12,Obj4:
(DC: ’p,-o’) (DC: ’o,-p’) DC: ’p,-p’) DC:[(’p’, ’-p’)]

Obj10,Obj8: Obj8,Obj9: Obj10,Obj9: Obj10,Obj9:
(DC: ’-o,-p’) (DC: ’-o,p’) (DC: ’-o,-p’) DC:[(’-o’, ’p’),

(’-o’, ’m’), (’-o’, ’o’),
(’-o’, ’s’), (’-o’, ’d’),
(’-o’, ’-f’), (’-o’, ’eq’),
(’-o’, ’f’), (’-o’, ’-d’),
(’-o’, ’-s’), (’-o’, ’-o’),
(’-o’, ’-m’), (’-o’, ’-p’),
(’-m’, ’p’), (’-m’, ’m’),
(’-m’, ’o’), (’-m’, ’s’),
(’-m’, ’d’), (’-m’, ’-f’),
(’-m’, ’eq’), (’-m’, ’f’),
(’-m’, ’-d’), (’-m’, ’-s’),
(’-m’, ’-o’), (’-m’, ’-m’),
(’-m’, ’-p’), (’-p’, ’p’),
(’-p’, ’m’), (’-p’, ’o’),
(’-p’, ’s’), (’-p’, ’d’),
(’-p’, ’-f’), (’-p’, ’eq’),
(’-p’, ’f’), (’-p’, ’-d’),
(’-p’, ’-s’), (’-p’, ’-o’),
(’-p’, ’-m’), (’-p’, ’-p’)]
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In the tests considering VGG identification, the reference relation of the gold standard was

present in 100% of the resulting sets of possible relations showing in Table 7, Column “Obtained

Result”, given by RCC composition table and Allen’s relations composition table results.

It was observed in some results that 2 images tested with 3 objects, being 2 objects present

in one image and 2 in another image (for example: Object11 and Object7 in one image and

Object7 and Object1 in another image) the result for the relations between Object11 and Object1

is not a set, but the exact pair of relations. It happened for 57% of the combinations, which can

be seen as a good result, taking into account that qualitative theories are not considered precise.

This result shows that combinations of qualitative relations doesn’t increase the imprecision that

already exists in the system.

From the remaining 43% combinations of objects, the result is a set of pairs of relations

(Table 7, Column “Obtained Result”), which 78% resulted in the exact relation for one of the

axis (relation for axis x or relation for axis y) and the accuracy of the set of possible relations for

the remaining axis varies from 8% to 20%.

The accuracy of the 22% combinations of objects which none of the axis received as

result an exact relation, the accuracy of the set of possible relations varies from 3% to 7%.

Using Yolo V5 for identification of objects, and keeping in mind that the input for the

Collaborative Spatial Reasoning is the LH Interval Calculus, the accuracy showed in Section

5.2.2 guaranteed that only 7% of the combinations of objects tested from the 30 images chosen,

resulted in a set of possible relations where the expected pair of relations is not present, this

means 0% of accuracy.

Trying to get a better evaluation about the implications of the imprecision from LH

Interval Calculus on Collaborative Spatial Reasoning results, a second test was done focused on

the inconsistent pairs of relations imputed by LH Interval Calculus.

The failure in the automatic identification of Object13 and Object14 is the cause of 68%

of wrong pairs of relations at Collaborative Spatial Reasoning results. The exclusion of the

balcony’s roof and addition of the shadow of Object6 caused 13% of wrong outputs. The shadow

is also the reason for 13% of wrong pair of relations when Object5 is present in the scenario.

The remaining 6% of inconsistent results is caused by imprecision in the outlining of all other

objects.
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5.3.2 Discussion

This chapter presented the results of the real situation experiments using two unmanned

aerial vehicles (UAVs). The images captured by the UAVs were used for the tasks of object

identification, followed by the application of Spatial Qualitative Reasoning to extract the relations

between the objects.

The first contribution of this work, the LH Interval Calculus, a formalism that merges the

concepts of Region Connection Calculus (RCC) and Allen’s Interval Algebra (AIA) demonstrate

very satisfactory results. The relations between the pairs of objects in RCC and AIA for axis x

and axis y showed successful results for manual identification of objects as well as for automatic

identification using Yolo V5.

The imprecision in the object identification led to the inconsistent results already explained

in section 5.2.2. This problem can be softened exploring the theories of Computer Vision, to

get a better object identification and a more precise bounding box around each object. In this

work a proper net was not trained at Yolo V5 due to the few amount of images and also because

Computer Vision techniques are not the focus of the work. But it is known that a specific trained

network could result in better accuracy for the system.

Even with an imperfect outlining of the objects, the relations precede, is preceded,

overlaps, is overlapped, during and is contained are able to absorb some imprecision in case

the projection of a pair of objects in the axis x and y have enough distance to deal with the

imprecision. On the other hand, a minimum deviation in the rectangle that sketches the objects

totally affects the relations meets, is met, starts, is started, finishes, is finished and equal.

The second contribution of this work, the Collaborative Spatial Reasoning formalism,

showed good results for the objective of infer the relative position of a third object given the

relation of two other objects. Inferring the relative position of objects present in two different

images, captured by UAVs flying over different regions of an environment and capturing pictures

with a partial view of the scene, it is possible to combine two complementary scenarios.

The precision of the object identification impacted the accuracy of the Collaborative

Spatial Reasoning that uses the LH Interval Calculus as input. Besides the Computer Vision

techniques, the system can be improved if more than one object in common is used to infer the

position of a third object. A deeper study in this matter is suggested for future work.
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6 CONCLUSION

The problem of interaction and communication between multi agent teams involving

humans and robotic agents in a common mission or task is not completely solved, however, for

tasks where precision is not the main objective, the use of qualitative data showed to be a good

solution.

The combination of diverse qualitative calculus can be used in many tasks, as search and

rescue of victims in disaster scenarios, environment mapping or any other domain where humans

and multiple robots need to cooperate for a common objective.

To cope with the interaction and communication problem between multi agent systems,

this work introduced two novel solutions. The first, LH Interval Calculus allows the exchange

of information between agents, from different points of view, through Allen’s Interval Algebra

relations projected in axis x and axis y, associated with Region Connection Calculus relations,

which can be easily seen and identified by robots as well as by specialists.

The second solution, the Collaborative Spatial Reasoning, allows different agents to feed

the system with its own partial perceptions of the environment and associate those information to

get knowledge about the complete scenario.

The two contributions of this work were tested using real data, captured by autonomous

unmanned aerial vehicles, in the environment and methodology described in Chapter 5. The

images captured showed 14 objects, identified in two different ways: manually and using the

deep neural network Yolo V5.

The results presented in Chapter 5 showed that LH Interval Calculus and Collaborative

Spatial Reasoning bring relevant contributions to environment mapping using qualitative data.

While image transmission can be a big issue in certain regions, the transmission of simple

sentences describing the environment disposition of the objects is much easier and, for the

experiments executed in this work, can be easily understood by the specialist operator in ground,

promoting a more intuitive and natural interaction between robots and humans.

For future work, it is very interesting to study the amount of objects in common in

two complementary images of an environment are necessary to increase the accuracy of the

Collaborative Spatial Reasoning. As the association of objects not present in both images take

into account the composition table, the association of more than two pairs can improve the

percentage of correct answers.
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It is also relevant to include different kinds of agents, and not only autonomous unmanned

aerial vehicles. To test the LH Interval Calculus and Collaborative Spatial Reasoning in agents

with aerial and terrestrial points of view can bring interesting results, including the addition of

the Occlusion Calculus in the terrestrial point of view.

To integrate the contributions of this work with probabilistic models of environment

mapping and robots self localization is recommended. The works described in Chapter 3 show

that associating qualitative formalism with probabilistic models increases the accuracy of systems

of robots localization, motion, guidance and mapping.
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Abstract
This paper describes a preliminary work towards
a collaborative system involving humans and un-
manned aerial vehicles to perform environment
mapping using a qualitative description of 3D ima-
ges. The images collected by a team of un-
manned aerial vehicles flying over a region are pre-
processed to reconstruct 3D images. The qualita-
tive description of the 3D images aims to simplify
the information delivered by the system to the users
engaged in a team of search and rescue mission, en-
hancing their understanding and knowledge about
the environment.

1 Introduction
The interaction between people and intelligent systems in-
cluding robots, leads to a high demand of reliable representa-
tions of human knowledge. Remote-controlled robots are be-
coming a reality in the world, and its applications vary from
delivery systems to complex surgeries. Specific aspects of in-
teraction as cooperation and collaboration raises the ability
of heterogeneous teams composed by humans and different
kinds of robots, or with different resources, to solve difficult
problems that rely on real time data analysis and quick res-
ponses.

Unmanned Aerial Vehicles (UAVs) are considered tools for
emergency informatics [Murphy, 2016], which is a scientific
field that approaches the use of different data-sets to save lives
in natural or man-made disasters, through acquisition, organi-
zation and visualization of data and consequently which ac-
tions can be taken into account. Besides the use of UAVs
for military proposes, there is potential for civil applications,
as forest fire tracking, damage survey after earthquakes or
tsunamis, monitoring of riots, search and rescue of missing
people, and so on.

This paper presents an extension of the work developed in
[Doherty et al., 2016], where an integrated collaborative sys-
tem (composed of humans and heterogeneous autonomous
Unmanned Aerial Vehicles) pursues the goal of generating
3D models of an environment. The information contained in
3D images might not be readily interpreted by the final user,
instead, a qualitative description that includes cognitive com-
prehensibility ensuring efficient understanding by humans

without wide computational complexity can yield better re-
sults for tasks such as search and rescue missions.

In this work a set of subfields of Qualitative Spatial Reaso-
ning are joined to provide a qualitative description of a scene,
observed by humans and robots, from different aerial points
of view, in a way that all agents involved in the system have
the possibility to understand where the objects are and the
relations between them. The reasoning presented in Region
Connection Calculus, Allen’s Interval algebra and Interval
Occlusion Calculus are used to provide the possible relations
between a pair of objects seen from an aerial point of view,
while the Cardinal Direction Calculus provides the basis for
the orientation definition of those points of view.

Three new relations, above, in the top of and in the bot-
tom of are presented to describe Allen’s relations precedes,
starts and finishes seen from a lateral point of view. Com-
binations of the relations are also developed to describe the
positions of the objects when the projections of their shapes
in axles x and y are not totally aligned, and cannot be descri-
bed by a single relation from Allen’s set of relations. Humans
and robots will be able to exchange information and infer data
about their partial view of the domain.

2 Qualitative Spatial Reasoning
Representing and reasoning about spatial knowledge can na-
turally be done through description of relations between two
or more objects, specifying how spatial entities are related in
space with others, particularly when numerical information
is unavailable or even unnecessary for humans [Chen et al.,
2015].

In this research a 3D space is considered and the spatial
entities are defined by a set of spatial points and lines. The set
of relations is JEPD (Joint Exhaustive and Pairwise Disjoint),
considering that in the set of spatial relations there is one and
only one that can be satisfied. JEPD relations can be called
basic relations for representing definite relationships between
spatial entities. The union of basic information can express
indefinite information. All base relations are possible in case
no information is known [Chen et al., 2015].

2.1 Region Connection Calculus
The basic relations between spatial regions are described in
the theory of Region Connection Calculus (RCC) [Randell et
al., 1992], through the primitive Connected (C(x,y)), where



Figure 1: Conceptual neighborhood diagram
[Randell et al., 1992]; [Renz, 2002].

two non-empty regions of some topological space x and y are
connected if and only if their topological closures share at
least one common point.

Following the same theory, the constraint language RCC-
8 contains eight JEPD base relations which allows reaso-
ning about topological distinctions, with possibility to infer
new spatial relations and transitions from incomplete spatial
knowledge. Figure 1 shows the eight qualitative spatial rela-
tions covered by RCC-8 and its possible transitions illustrated
by regions x and y on a conceptual neighborhood diagram
[Randell et al., 1992; Renz, 2002].

To define a reasoning for interpreting images collected by
the UAVs, the RCC-8 theory is associated with Allen’s Inter-
val Algebra, described in the next section.

2.2 Allen’s Interval Algebra
From the perspective of artificial intelligence, Allen’s Inter-
val Algebra describes a temporal representation and reaso-
ning where temporal interval is considered as a primitive.
This method represents the relationships between pairs of re-
ference intervals taking into account their upper and lower
limits in a hierarchical manner, resulting in a set of 13 jointly-
exhaustive and pairwise-disjoint base relations [Allen, 1990].
Figure 2 shows Allen’s relations considering two intervals, x
and y.

Considering a constraint network pair (N,C), N being the
set of vertices where each domain element is represented by
a vertex, and C representing the set of constraints defined by
the basic Allen’s relations, it is possible to verify the existence
of a consistent scenario by imposing algebraic closure on the
network of constraints, to confirm whether the configurations
provided by the information from the agents are feasible in at
least one scenario of a domain described by the set of Allen’s
relations [Santos et al., 2015].

A network (N,C) is algebraically closed if its three vertices
(i, j, k) ∈ N 3, and is consistent with the composition C(i, j)⊆
C(i,k) ◦ C(k,j) .

The Allen’s relations can be applied to agents’ viewpoints
considering two rigid body convex entities, in an Euclidean
plane. The observers (also referred as viewpoint Σi), are
represented as pairs Σi = (xi, vi), where xi express the posi-
tion of observer’s centroid and vi is the unit vector represen-
ting observer’s orientation, and objects, identified by the 2D

Figure 2: Allen’s Relations
[Santos et al., 2015], adapted from [Allen, 1990].

position of their centroids. The function image(x,Σ) maps
the projection of an object x perceived by an observer from
a point of view Σ. In case more than one observer is present
in the domain, each observer is perceived as an object when
located within the field of view of another viewpoint [Santos
et al., 2015]. Furthermore, each observer is able to describe
relations between pair of objects in its field of view.

An extension of Allen’s Interval Algebra called Interval
Occlusion Calculus was developed proposing to reason about
occlusion from multiple points of view, and is described in
the next section.

2.3 Interval Occlusion Calculus
Interval Occlusion Calculus (IOC) is a qualitative description
of a set of basic relations between pairs of objects observed
from a point of view, given the object’s lines of sight [Santos
et al., 2015]. Considering that two objects A and B can be
observed from a point of view Σ, the function image defined
by a = image(A,Σ) and b = image(B,Σ), maps the image
of a physical body seen from a viewpoint Σ. Figure 3 illus-
trates an example of two bodies A and B, as well as a map
based on the object’s lines of sight, enabling the observers
to locate themselves with respect to the qualitative relations
observed between the images of the objects. If Σ is located
on the region of the map marked by p, then the observer will
notice that a precedes b, or if Σ is located on the region o+,
it could see that a overlaps and is in front of b. The same
reasoning applies to all other positions of the map. Notations
“region 1, 2, 3” and the red dashed region will be explained
hereafter.

According to the distance between the observer and the ob-
jects (the depth), the image projected in a point of view Σ
can be bigger or smaller. A layered interval is defined by
I = (Ia, l) where Ia = (x1, x2), x1 < x2 are real numbers,
x1 is the lower limit of I , x2 represents its upper limit and
l is the layer of I . The function ext(I) maps the extension
(the upper and lower limits) of a layered interval I and the
function l(I) maps the proximity between the object and the
observer (as closer observers and objects are, greater is the



Figure 3: Basic Relations of Interval Occlusion Calculus
[Santos et al., 2015].

value of l). Finally, for any IOC relation r between two inter-
vals I and J , the notation I r + J applies iff l(I) > l(J) and I
r- J applies iff l(I) < l(J) [Santos et al., 2015].

It is possible to apply IOC relations for any pair of ob-
jects, including environments where multiple agents are able
to share each other’s their spatial observations from different
perspectives, interpreting and checking the consistency of the
information received from other agents according to the trans-
lation table that can be found in [Santos et al., 2015]. Let two
distinct point of views Σ1 and Σ2 observe two objects A and
B. The translation table gives the set of possible relations R
considering exhaustively all the possible locations of Σ2 from
the point of view Σ1, taking into account that a = image (A,
Σ1), b = image (B, Σ1), a’ = image (A, Σ2), b’ = image (B,
Σ2), σ1 = image (Σ1, Σ2) and σ2 = image (Σ2, Σ1).

Reasoning about the environment showed in Figure 3, it is
possible to interpret that if Σ1 sees {a p b}, {σ2 pi a}, and
{σ2 p b}; then Σ2 is in Region (2) of the map and its possible
observations is the set of relations {a’ {pi; p} b’}. As another
example, if Σ2 is in the red-dashed region between A and Σ1,
then Σ1 observes that {σ2 {s+, f+, d+} a}, and the set of
relations from Σ2 would be {a’ {p, m, o+} b’} [Santos et al.,
2015].

2.4 Cardinal Direction Calculus
A qualitative reasoning to deal with different perspectives
perceived by multiple agents observing a scene is called Car-
dinal Direction Calculus.

The Cardinal Direction Calculus (CDC) is a formalism to
reason about cardinal directions between objects and its rela-
tions. CDC is composed by 9 basic relations including a neu-
tral region: north (n), east (e), west (w), south (s), northwest
(nw), northeast (ne), southeast (se), southwest (sw) and equal
(eq), that corresponds to the neutral region [Frank, 1996].

Through CDC relations it is possible to infer the direction
of two objects I and J from the knowledge of the direction
between I and K, and between K and J .

In [Frank, 1996] it is possible to find more informa-
tion related to cardinal reasoning, as a composition table of
projection-based directions, a study about cone-shaped area
for which a symbolic direction is applicable and the quadrant-
projection that includes the neutral area.

Figure 4: Object’s projections from an aerial point of view.

The multiple point of views and relations mentioned in this
chapter will be joined with the collaborative reasoning to be
described in next sections in order to provide the appropriate
constraints to interpret 3D images.

3 Collaborative Spatial Reasoning for
Environment Mapping

Assuming that a system is composed by two or more agents
and that one or more of those agents are humans, the mis-
sion to describe the position of objects present at a previously
unknown environment might be impaired without the use of
sentences that take into account the way people are used to
describe this kind of information.

Considering an image composed by two objects I and J
and observed from an aerial point of view Σ pointing to a
direction v, the observed relations r are described in the sen-
tence I r J: Σ, v and based on Allen’s Interval Algebra, Inter-
val Occlusion Calculus (IOC) and Region Connection Calcu-
lus, described on Section 2.

The image of the objects seen from an aerial point of view
is processed by projecting its shape on two axes, x and y,
whose origin is located in the upper left corner of the image
(Figure 4). Whilst in IOC a single layered interval is con-
sidered, an aerial view requires at least two intervals: l and
h where l = (x1, x2); x1 < x2 and h = (y1, y2); y1 < y2. To
reason about 3D images, an additional interval c where c =
(z1, z2); z1 < z2 is added with the projections of the object
on axis z. The formalization of this theory and a deep study
about its implementation can be seen in [Guesgen, 1989] and
[Balbiani et al., 2002].

The cardinal direction indicated by a compass in the case
of robotic agents and by human sense of direction in case of
human agents, determines the vector v to represent the orien-
tation of a point of view Σ observing the objects in a scene.
The aerial view can be made by a camera on board the drones
or a person looking at an environment from the window of
a building, a range of ± 22,5o is considered to classify each
cardinal direction, as showed on Figure 5. The logic to des-
cribe the observed relations for objects present in a scene re-
quires the possibility to be transferred, to correctly describe
relations from any point of view, for example, if object I pre-
cedes object J when Σ1 is directed to North, the same scene
seen from a Σ2 directed to South will be described as object
J precedes object I . The directions v considered are: North



Figure 5: Cardinal directions.

(N) = 0o, North East (NE) = 45o, East (E) = 90o, South East
(SE) = 135o, South (S) = 180o, South West (SW) = 225o, West
(W) = 270o and North West (NW) = 315o.

The notation “Object1 relation Object2 : Σ, v” is used to
describe the possible relations between two objects observed
from an aerial point of view Σ oriented to the direction v.
Extending the single layered interval to a representation in
two axes, more than one relation can apply to a pair of objects,
resulting in the first set of reflexive relations described below,
considering the arrangement of objects as shown in Figure 6.
The relations written in capital letters refers to the RCC set of
relations.

• I p J : Σ, v, read as “I precedes J from Σ oriented to v”
and defined by l(I) p l(J) ∩ l(I) DC l(J);

• I {p, m} J : Σ, v, read as “I precedes and meets J from
Σ oriented to v” and defined by l(I) p l(J) ∩ l(I) EC l(J);

• I {p, o} J : Σ, v, read as “I precedes and overlaps J from
Σ oriented to v” and defined by l(I) p l(J) ∩ l(I) O l(J);

• I s J : Σ, v, read as “I starts J from Σ oriented to v” and
defined by l(I) s l(J) ∩ h(I) TPP h(J);

• I d J : Σ, v, read as “I is during J from Σ oriented to v”
and defined by l(I) d l(J) ∩ h(I) NTPP h(J);

• I f J : Σ, v, read as “I finishes J from Σ oriented to v”
and defined by l(I) f l(J) ∩ h(I) TPP h(J);

• I eq J : Σ, v, read as “I is equal to J from Σ oriented to
v” and defined by l(I) eq l(J) ∩ h(I) eq h(J).

The same object’s positions showed in Figure 6 seen from
a lateral point of view results in the second set of relations of
Figure 7. The relations precedes, starts and finishes are
represented by three new relations: above, top and bottom,
defined below, to avoid misunderstandings regarding object’s
positions when seen from different directions. The relation
during is not described here because it keeps the same defi-
nition from the first set of relations.

• I a J : Σ, v, read as “I is above J from Σ oriented to v”
and defined by h(I) a h(J) ∩ h(I) DC h(J);

• I {a, m} J : Σ, v, read as “I is above and meets J from Σ
oriented to v” and defined by h(I) a h(J) ∩ h(I) EC h(J);

Figure 6: First set of relations and its definitions derived from
Allen’s Relations Calculus and Region Connection Calculus.

Figure 7: Second set of relations and its definitions derived
from Allen’s Relations Calculus and Region Connection Cal-
culus.

• I {a, o} J : Σ, v, read as “I is above and overlaps J from
Σ oriented to v” and defined by h(I) a h(J) ∩ h(I) O h(J);

• I t J : Σ, v, read as “I is in the top of J from Σ oriented
to v” and defined by h(I) t h(J) ∩ l(I) TPP l(J);

• I b J : Σ, v, read as “I is in the bottom of J from Σ
oriented to v” and defined by h(I) b h(J) ∩ l(I) TPP l(J).

A third set of relations was developed associating the first
and second sets to express the relations for objects whose pro-
jections l and h are not totally aligned, and here the forma-
lization is different from [Guesgen, 1989] because even wor-
king with intervals projected in two axles, it can express three
possible relations, while in [Guesgen, 1989] it is possible to
represent only two relations. Figure 8 shows the position of
the objects described below.

• I {p, a} J : Σ, v, read as “I precedes and is above J from
Σ oriented to v” and defined by l(I) p l(J) ∩ h(I) a h(J)
∩ l(I) DC l(J);

• I {p, m, a} J : Σ, v, read as “I precedes, meets and is
above J from Σ oriented to v” and defined by l(I) p l(J)
∩ l(I) EC l(J) ∩ h(I) a h(J);

• I {p, o, a} J : Σ, v, read as “I precedes, overlaps and is



Figure 8: Third set of relations and its definitions derived
from Allen’s Relations Calculus and Region Connection Cal-
culus.

above J from Σ oriented to v” and defined by l(I) p l(J)
∩ l(I) PO l(J) ∩ h(I) PO h(J) ∩ h(I) a h(J);

• I {s, o, a} J : Σ, v, read as “I starts, overlaps and is above
J from Σ oriented to v” and defined by l(I) s l(J) ∩ h(I)
PO h(J) ∩ l(I) PO l(J) ∩ h(I) a h(J);

• I {d, o, a} J : Σ, v, read as “I is during, overlaps and is
above J from Σ oriented to v” and defined by l(I) d l(J)
∩ h(I) PO h(J) ∩ l(I) PO l(J) ∩ h(I) a h(J);

• I {f, o, a} J : Σ, v, read as “I finishes, overlaps and is
above J from Σ oriented to v” and defined by l(I) f l(J)
∩ h(I) PO h(J) ∪ l(I) PO l(J) ∩ h(I) a h(J).

To conclude, it is perceived that the basic relations pre-
cedes, meets, overlaps, starts, during, finishes, equal and the
new ones above, top and bottom are enough to describe all
possible configurations for a pair of objects.

Qualitative solutions for the robotic navigation problem
was discussed in [Schlieder, 1993] and [Santos et al., 2016],
where reference points was encoded in the tessellation of a
plane into regions to enable agents to navigate and localize
themselves in an environment through the identification of
landmarks. This approach takes the occlusion factor as an
important role, making it difficult to implement the same rea-
soning for an aerial point of view, as the occlusion identified
in most cases are in the vertical plane, for example, the leafs
occluding a vehicle parked under a tree.

The effectiveness of the logic presented in this chapter will
be tested using video image collected by drones in an experi-
ment described in Section 5.

4 Collaborative Reasoning
Multi-agent systems are often supposed to have several ad-
vantages over single robot systems, as the capability to ac-
complish a single task faster, or efficiently exchange infor-
mation about their position to precisely localize themselves
whenever they sense each other [Burgard et al., 2000]. When

multiple agents are observing a scene and occlusion pre-
vents sensors from assessing parts of the objects present in
the scene, distinct observers can provide multiple view-point
descriptions about the objects they can detect, improving
the completeness of the information observed [Santos et al.,
2015].

Collaborative systems are required to integrate not only
robots, but also human resources. For complex emergency
scenarios such as search and rescue missions, providing as-
sistance and guiding people to a safe destination from inha-
bitants lost in wilderness regions, at sea scenarios, places de-
vastated by earthquakes, flooding or forest fires [Doherty et
al., 2010] it is an essential role to provide an effective com-
munication and continuous interaction between people and
robotic agents in order to achieve mission goals, specially the
ones related to environment exploration, so that each indivi-
dual can explore different areas simultaneously [Burgard et
al., 2000].

5 Experiment
Three data collection flights were performed at Motala Flyg-
klubb and two different UAV platforms were used.

The first one is a DJI Matrice 600 Pro1 research platform
and The second platform is a DJI Matrice 1002.

Both platforms are equipped with Intel NUC computers
using Core i7-7567U processors, 16 GB of memory, and 500
GB SSD storage. The DJI Zenmuse Z33 cameras were used
to collect video and images during the experimental flights.

The scanning patterns flown to collect the experimental
data were automatically generated to cover a designated area.
The platforms took off manually and after reaching a safe al-
titude flied autonomously over the region and performed the
scan according to the pre-determinate altitude. The flights
were performed at three different altitudes: 30, 50 and 80 m
above the ground level (AGL).

The videos and photos collected register a partial view of
the environment and were taken from different directions, to
show different partial perspectives of each scene. The images
contain many buildings with different sizes and colors, some
cars, trees and a small airplane. The background contains
areas covered by grass, asphalt and a road.

Each drone flew over a different portion of the area, but
capturing images of some objects in common, in order to use
those objects as references to infer the position of all other
objects that are not in its field of view. The information can
be easily exchanged by agents via wi-fi, including the ground
operator. It is possible to transmit images, but a large broad-
band is necessary and it is not always available. The deve-
loped sentences in the format “Object1 {relations} Object2 :
Σ, v” can be transmitted using only sparse data and thus cope
with the bandwidth problem, independent of the number of
axles used to generate the relations. The complexity will be
related to the process of object identification, projections on
axles and relations generation, and not to data transmission.

1www.dji.com/matrice600/info
2www.dji.com/matrice100
3www.dji.com/zenmuse-z3



Figure 9: Image captured by drone DJI Matrice 100, flying in
the East direction

Figure 10: Image captured by drone DJI Matrice 100, flying
in the East direction

Figure 11: Image captured by drone DJI Matrice 600, flying
in the South direction

Figure 12: Sketch of a visual map representing object’s posi-
tions

Figures 9 and 10 show images captured by one drone flying
in the East direction, at an altitude of 30 meters. As soon as
the system recognize a pair of objects, each object is labeled
and the relations between them are identified according to the
set of restrictions of Section 3, and the information is trans-
mitted to the other agents. The information contained in Fig-
ure 9 is transmitted in the format: Object2 {p, a} Object1
: Σ1, E, while Figure 10 should transmit the information
Object3 {a} Object2 : Σ1, E.

The second agent produced the image seen in Figure 11
flying in the South direction, at an altitude of 50 meters.
The information transmitted by this agent is: Object4 {p, a}
Object3 : Σ2, S. The airplane labeled as Object4 is not iden-
tified as a square or rectangle in the image, but its extreme
points can be projected in the axes enabling the system to fit
it under a square format.

The information exchanged by the agents is supposed to
produce a result similar to the Figure 12, where it is possi-
ble to see a sketch of a map with the objects translated to the
North direction, to complement the information already re-
ceived in the format of sentences. The Figure 13 shows the
environment used in this example. The image was captured
by DJI Matrice 600, flying to North direction, at 80 meters of
altitude.



Figure 13: Real environment

Currently, those images and videos are under analyses to
evaluate which computer vision techniques and filters will be
applied to identify and label the objects present in each scene
or frame for posterior implementation and test of the relations
of Collaborative Spatial Reasoning.

6 Next Steps
After implementation, test and correction of any inconsisten-
cies found in the Collaborative Spatial Reasoning for Envi-
ronment Mapping using videos and 2D photographs captured
by drones, the same reasoning will be applied to 3D ima-
ges, using an additional axis projection. The implementation
using 2D and 3D data will be compared to evaluate pros and
cons of adding complexity to the system. Tuples of possible
relations will be studied to avoid an explosion of number of
relational combinations.

The laser data collected in the experiment will be used to
improve the quality of the input data, as it contains the three-
dimensional shape of the objects and its GPS position. Point
clouds will also be used to create a 3D version of the scene.
The delegation framework [Doherty et al., 2013] is planned
to be used in the future, in order to get collaboration between
agents.

It is expected that the integration of qualitative and quan-
titative data, as well as robot’s and human’s abilities increase
the robustness of the system, enabling all involved in a mis-
sion to describe and understand an environment to reach their
goals.
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