
Non-extensive entropy algorithm for multi-region segmentation:
generalization and comparison∗
Algoritmo de entropia não-extensiva para segmentação de multi-região: generalização e
comparação

Paulo Sergio Rodrigues1

Gilson Antonio Giraldi2

Abstract

Since eighties, the concept of entropy has been applied in the field of image processing

and analysis. This concept is based on Shannon entropy which is an application in the

Theory of Information of the traditional Boltzmann-Gibbs entropy, proposed to the clas-

sical thermodynamic. For decades, it is known that this old formalism of entropy fails to

explain some physical system if they have complex behavior such as long-rang and long-

memory interactions. Recently, studies in mechanical statistics have proposed a new kind

of entropy, called Tsallis entropy (or q-entropy or non-extensive entropy), which has been

considered with promising results on several application in order to explain such phenom-

ena. In this paper we proposed an algorithm for image segmentation which is based on this

new kind of entropy. Our approach, called Non-Extensive Segmentation Recursive Algo-

rithm (NESRA) is an extension of other previous methodologies to binarize images only. In

order to show the robustness of the NESRA performance, we compare it with well known

and traditional approaches such as bootstrap, fuzzy c-means, k-means, self-organizing map

and watershed image clustering methods. We show that, in several cases, the NESRA is

better or overcomes these traditional approaches in distinct class of images.
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Resumo

Desde os anos oitenta, o conceito de entropia tem sido aplicado na área de processamento

de imagens. Este conceito baseia-se na entropia de Shannon, que é uma aplicação da Teoria

da Informação da tradicional entropia Boltzmann-Gibbs, proposta no campo da termodinâ-

mica clássica. No entanto, há décadas sabe-se que este antigo formalismo não consegue ex-

plicar alguns sistemas físicos se eles têm um comportamento complexo tal como interações

de longo alcance espacial e temporal, bem como, comportamento fractal sob certas condi-

ções muito específicas. Recentemente, estudos em mecânica estatística têm proposto um

novo tipo de entropia, chamada entropia de Tsallis (q-entropia ou entropia não-extensiva),

cujos resultados têm sido considerados promissores em diversas aplicações, principalmente

para explicar tais fenômenos. Neste trabalho, foi proposto um algoritmo para segmentação

de imagens que se baseia neste novo tipo de entropia. A abordagem proposta aqui, cha-

mada de Algoritmo Recursivo de Segmentação Não-Extensiva (NESRA, do inglês), é uma

extensão de outras metodologias anteriores cujo objetivo é binarizar imagens digitais. A

fim de mostrar a robustez do desempenho do NESRA, comparamos esse algoritmo com

abordagens bem conhecidas e tradicionais, como bootstrap, fuzzy c-means, k-means, self-

organizing maps e watershed clustering. Mostramos que, em vários casos, o NESRA é

melhor ou supera essas abordagens tradicionais em classes distintas de imagens.

Palavras-chave: Entropia de Tsallis. Segmentação de imagens. Entropia não-extensiva.
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1 INTRODUCTION

Image segmentation plays an important role on the basis of most of all computational
vision systems. In order to accomplish automatically tasks such as scene recognition, for in-
stance, a software needs initially to separate the scene into salient regions. This is similar to
extract homogeneous regions from the background considering particular features.

Regarding the large volume of algorithms designed to accomplish the whole task of
image segmentation, we can note two main groups: those designed for the primary task of
region clustering according to local features and those composed of small procedures. These
small procedures generally post-process the output of the first group’s algorithms in order to
finer segmentation. For example, after a initial segmentation, we can use some criterion to
merge or split coherent regions. In this paper, we call the algorithms of the first group of
basic segmentation algorithms (or simple basic algorithms). Among them, we can highlight
examples such as the well known k-means, ISODATA, mean-shift, fuzzy c-means, bootstrap,
SOM, watershed and several others based on histograms, just to name a few. From the second
group, we can cite the works of Makrogiannis, Economou and Fotopoulos (2005), Makrogiannis
et al. (2005) and Pappas (1992).

In order to minimize the computational time carried out by the second group, the first
group’s basic algorithms must be improved as much as possible. This is one of the main reasons
for which the focus of this paper is on the first group.

The k-mean (GRAY; LINDE, 1982) and ISODATA (LOHMANN, 1998) are widely used
clustering techniques proved to be optimal. However, they suffer the problems of local optima,
clustering reproducibility and initialization sensitivity. Also, they require the number of clusters
to be known a priori. Works using K-mean algorithm focusing on image clustering can be seen
in (SINGH et al., 1996; CHEN; LUO; PARKER, 1998; LUO; YU-FEI; HONG-JIANG, 2003).

The mean-shift algorithm is a general nonparametric technique proposed by Comaniciu
and Meer (2002) for clustering of complex multimodal feature space. It randomly tessellates the
space with search windows, and moves until convergence is achieved at the nearest mode of the
underlying probability distribution of density gradients. Several application of this algorithm
for color clustering can also be found in (XIAN-JIU; WEI, 2005; LUO; KHOSHGOFTAAR, 2004;
RONG-CHUN, 2003).

Bootstrap clustering technique is similar to other resamplig schemes, such as cross-
validation and jackknifing. A bootstrap is obtained by sampling with replacement from an
empirical distribution function from training set. Chen et al. (2002) applied a bootstrap imple-
mentation to computer-aided diagnosis in breast ultrasound images. Dutendas et al. (1994) pre-
sented an Bayesian approach combined with a bootstrap algorithm in order to segment images
from the retina. Another two applications applying bootstrap techniques on image segmentation
can be found in (ZHENG; XIAN-BIN; WEI, 2004; MARSHALL, 1996).

The Watershed transform is a reliable tool for initial image segmentation. A signifi-
cant advantage of Watershed segmentation and a reason behind its extended utilization is that
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boundaries on the image plane are always guaranteed to be connected and closed, and each gra-
dient minimum corresponds to one region (MEYER, 1992). A nice explaning about Watershed
algorithm can be found also in (GONZALEZ; WOODS, 1992).

As an unsupervised clustering algorithm we can cite the Fuzzy c-mean (FCM) which
has been applied successfully to a number of problems involving feature analysis, clustering
and classifier design. It has been applied to wide variety of applications such as agricultural
engineering, astronomy, chemistry, geology, image analysis, medical diagnosis, shape analysis
and target recognition (BEZDEK, 1987). Unlabeled data are classified by definition of a norm,
cluster prototype and by minimizing an objective function. Although the description of the
original algorithm dates back from 1973 (BEZDEK, 1973; DUNN, 1974), derivatives have been
described with modified definitions for the norm and prototypes for the cluster center (KRISH-

NAPURAM; NASRAOUI; KELLER, 1992; DAVE; BHASWAN, 1992).
One of the most used methods in the last years to image clustering is the so called self

organizing maps (SOM), proposed by Kohonen (1989). The SOM neural network consists of
two layers, and for every neuron in the input layer, there is a link to every neuron in the output
layer. During the training process of SOM network, for each input vector we get one best
matching neuron in the output layer. Here a competitive learning algorithm is used to adjust
weight vectors in the neighborhood of best matching neuron. The adjustment decreases as the
time and the range of neighborhood increases. The following are interest works on this line.

Generally, several algorithms for clustering are combined with other approaches in order
to reach finer results. Dong and Xie 2005 present a comparison between several SOM networks
for clustering color images. Li and Li (2003), presented a combination of SOM and fuzzy
systems for segmentation of several color images. Rickard et al. (2004) use a SOM network
applied two times at the same set of images in order to segment mammographic images. The
first application intends to achieve a initial segmentation and the second intends to finer seg-
mentation. Goktepe, Yalabik and Atalay 1996 use a SOM combined with a multilayer SOM
(Hierarchical SOM - HSOM) in order to sement textured images. Kurnaz, Dokur and Olmez
(2001) use a called Incremental SOM (ISOM) neural network in order to segment ultrasound
images where elements of feature vectors are formed by the Fast Fourier Transformation (FFT)
of image intensities in a 4x4 blocs. They compare the traditional SOM with the proposed ISOM
and report better results.

Shah-Hosseini and Safabakhsh (2002) proposed a growing time adaptative SOM (called
TASOM) followed by a post-processing algorithm which recognizes each peak neuron along
with its left and right limits. This way, the number of regions, and the regions themselves are
determined. These properties, in fact, make the proposed segmentation algorithm an automatic
multilevel thresholding algorithm. In their work, each neuron in a TASOM network has its own
learning rate and neighborhood function which are updated automatically with the incoming
input vectors. Also, the TASOM has a growing number of neurons. A combination of SOM
and Probabilistic Neural Network (PNN) has also be proposed, like Ma et al. (1998) which
presented a SOM combined with a PNN in order to segment large volume data of CT images.
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Image segmentation is a processing inherently cognitive, thereby concerning the brain.
As such, it is a subjective task, yielding to an oversegmented scene (with high level of details)
or an undersegmented one (with high level of abstraction). Normally, there is a high correlation
between the low level features and the high level ones. These correlations are not necessarily
linear and there are few researches regarding them. An exception is the work of Albuquerque et
al. (2004), which have used a new kind of entropy, called Tsallis non-extensive entropy (TSAL-

LIS, 1999), in order to segment mammography gray scale images. They have achieved better
results than the traditional Boltzmann-Gibbs entropy when the input images are considered as
having high interactions between features. However, their algorithm only binarize gray scale
images according to non-extensive theory. Also, they have tested their algorithm only over a
small data set. Then, it is interesting to see how the Tsallis entropy, also called q-entropy, be-
haves applying it over more natural images and comparing the results with other approaches for
the same purpose.

In this paper, we propose an extension of the algorithm presented by Albuquerque et al.
(2004) applying recursively the q-entropy over the input image. In order to show the robustness
of our method, we also compare it with well known basic approaches under several class of
images.

The paper is organized as follows. In Section 2, we introduce the q-entropy under the
context of non-extensive systems and explains the original non-recursive method. In Section 3,
we compare the proposed algorithm with other methodologies. Finally, in Section 4 we discuss
the results and make some conclusions.

2 THE PROPOSED METHOD

2.1 Tsallis Entropy

The entropy is an idea born under the thermodynamics concept, not as something mainly
intuitive, but as something mainly quantitative, defined by an equation. Also, we may say that
it is a concept that is associated to the order of irreversible processes in the universe. Physically,
it may be associated to the amount of disorder in a physical system. Shannon redefined the
concept of entropy of Boltzmann-Gibbs as an uncertainty measure associated to the content
of information of a system. In this theory, the entropy of a discrete source is often obtained
from a probability distribution P = (p1, . . . , pk), 0 ≤ pi ≤ 1 and

∑
i pi = 1, where pi is the

probability of finding the system in the state i. In this context, the Shannon entropy (BGS) may
be described as

S = −
∑
i

pi ln(pi) (1)

Generically speaking, systems that have statistics of the type BGS are called extensive
systems. Such systems have an additive property, defined as follows. Let P and Q be two
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random variables, with probability densities functions P = (p1, . . . , pn) and Q = (q1, . . . , qm),
respectively. If P and Q will be independent, under the context of the Probability Theory, the
entropy of the composed distribution1 verify the so called additivity rule:

S(P ∗Q) = S(P ) + S(Q) (2)

This traditional form of entropy, called Boltzmann-Gibbs-Shannon (BGS) entropy, is
well known and for years has achieved relative success to explain several phenomenon if the ef-
fective microscopic interactions are short-ranged (i.e., close spatial connections) and the effec-
tive spatial microscopic memory is short-ranged (i.e., close time connections) and the bound-
ary conditions are non(multi)fractal. Roughly speaking, the standard formalism are applica-
ble whenever (and probably only whenever) the relevant space-time (hence the relevant phase
space) is non(multi)fractal. If this is not the case, some kind of extension appears to became
necessary, as said Tsallis (1999):

[...] In complete analogy with Newtonian mechanics, when it becomes only
an approximation (an increasingly bad one) when the involved velocities ap-
proach that of light or the masses are as small as say the electron mass; the stan-
dard statistical mechanics do not apply when the above requirements (short-
range microscopic interactions, short-ranged microscopic memory and (multi)-
fractal boundary conditions) are not the case [...].

However, recent developments, based on the concept of nonextensive entropy, also
called Tsallis entropy, have generated a new interest in the study of Shannon entropy for Infor-
mation Theory (TSALLIS, 2001; SHANNON; WEAVER, 1948; ALBUQUERQUE et al., 2004). This
interest appears mainly due to the similarities between the functions of Shannon-Boltzmann-
Gibbs entropy. Tsallis entropy (or q-entropy) is a new proposal for the generalization of Boltzmann-
Gibbs traditional entropy applied to nonextensive physical systems.

The non-extensive characteristic of Tsallis entropy has been applied through the inclu-
sion of a parameter q, which generates several mathematical properties such as non-negativity,
concavity, equiprobability, q-additivity and q-axiomality of group. The general equation of
entropy proposed by Tsallis, is as follows:

Sq(p1, . . . pk) =
1−

∑k
i=1(pi)

q

q − 1
(3)

where k is the total number of possibilities of the system and the real number q is the entropic
index that characterizes the degree of non-extensiveness. In the limit q → 1, Equation (3) meets
the traditional BGS entropy defined by Equation (1).

These characteristics give to q-entropy flexibility in explanation of several physical sys-
tems. On the other hand, this new kind of entropy does not fail to explain the traditional physical
systems since it is a generalization.

1we define the composed distribution, also called direct product of P = (p1, . . . , pn) and Q = (q1, . . . , qm), as
P ∗Q = {piqj}i,j , with 1 ≤ i ≤ n and 1 ≤ j ≤ m

Abakós, Belo Horizonte,v. 1, n. 2, p. 03 – 31, maio 2013. – ISSN:2316–9451 8



Non-extensive entropy algorithm for multi-region segmentation: generalization and comparison

However, a generalization of some theory may suppose the violation of one of its postu-
lates. In the case of the generalized entropy proposed by Tsallis, the additive property described
by Equation (2) is violated in the form of Equation (4), which applies if the system has a non-
extensive characteristic. In this case, the Tsallis statistics is useful and the q-additivity describes
better the composed system. In our case, the experimental results (Section 3) show that it is bet-
ter to consider our systems as having non-extensive behavior.

Sq(P +Q) = Sq(P ) + Sq(Q) + (1− q) · Sq(P ) · Sq(Q). (4)

In this equation, the term (1 − q) stands for the degree of non-extensiveness: similarly as
Equation (3), in the limit q → 1, S(P ∗Q) meets the the BGS entropy.

Considering Sq ≥ 0 in the pseudo-additive formalism of the Equation (4), the following
classification for entropic systems is defined:

• Subextensive entropy (q > 1)

Sq(P +Q) > Sq(P ) + Sq(Q)

• Extensive entropy (q = 1)

Sq(P +Q) = Sq(P ) + Sq(Q)

• Superextensive entropy (q < 1)

Sq(P +Q) < Sq(P ) + Sq(Q)

Taking into account the similarities between the formalisms of Boltzmann-Gibbs-Shan-
non entropy, it is interesting to investigate the possibility of the generalization of Shannon en-
tropy to the case of the information theory, as has been recently shown by Yamano (2001).
This generalization may be extended to image segmentation tasks, by applying Tsallis entropy,
which has nonadditive information contents.

In this paper we propose to segment an image using q-entropy and compare it with other
well known segmentation approaches. The motivations to use the q-entropy are: 1) manag-
ing only a simple parameter q opens the possibility of simply applying several segmentation
and choosing that generates the best result; 2) as suggested in (ALBUQUERQUE et al., 2004), the
mammographic images and possible several others natural images have a non-extensive behav-
ior; 3) it is simple and makes the implementation easy having a low computational overload.

The contributions of our paper are: 1) proposing a recursive algorithm from that pro-
posed in (ALBUQUERQUE et al., 2004); 2) applying the non-extensive segmentation for a multi-
region segmentation task; 3) compare the non-extensive approach against other prominent
methodologies; and 4) applying our method on a large range class of images.
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2.2 The Non-extensive multi-region segmentation algorithm (NESRA)

Applying the concept of entropy in order to segment a digital image is a common prac-
tice since Pun (1981) showed that to maximize the foreground and background’s Shannon en-
tropy of a gray level image may reach good results concerning the prominent regions. Then,
other works following the same line were proposed, e.g, Kapur, Sahoo and Wong (1985) max-
imized un upper bound of the total a posteriori entropy in order to obtain the threshold level.
Abutaleb (1989) extended the method using two-dimensional entropies. Li and Lee (1993),
and Pal (1996) used the directed divergence of Kullback for the selection of the threshold, and
Soltani and Wong (1988) used the Reiny entropy model for image thresholding.

In 2004, Albuquerque et al. (2004) presented the concept of non-extensive entropy ap-
plied to mammographic gray scale images. They assume a probability distribution, one for
background and other for foreground and take the threshold that maximizes the non-additivity
characteristic given by Equation (4). However, as several methods designed to produce binary
images, this approach does not work for multi-region segmentation as well. Then, we pro-
posed an extension of the method presented in Albuquerque et al. (2004) applying recursively
the maximization of Equation (4) over the background and the foreground in order to achieve
multi-regions of homogenous gray level or color distribution.

It can be argued that any parametric or non parametric method with the objective of
finding an ideal threshold, producing a binary image, can be recursively used in the foreground
and in the background in order to achieve multi-regions. However, our approach, based on
non-extensive entropy, out performs several well known approaches under the same conditions.
In this section, we show our new multi-region segmentation method based also on the non-
extensive entropy concept.

First of all, we will review the non-extensive approach for image segmentation proposed
in (ALBUQUERQUE et al., 2004).

2.3 Non-extensive segmentation algorithm for image binarization

Suppose an image with k gray-levels, let the probability distribution of these levels be
P = {pi = p1; p2; . . . ; pk} . Now, we want to consider two probability distribution from P ,
one for the foreground (PA) and another for the background (PB). We can make a partition
between the pixels from P into A and B. In order to maintain the constraints 0 ≤ PA ≤ 1 and
0 ≤ PB ≤ 1 we must re-normalize both distribution as:

PA :
p1
pA
,
p2
pA
, . . . ,

pt
pA

(5)

PB :
pt+1

pB
,
pt+2

pB
, . . . ,

pk
pB

(6)
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where pA =
∑t

i=1 pi and pB =
∑k

i=t+1 pi.
Now, we calculate the a priori Tsallis entropy for each distribution such as

SA =
1−

∑t
i=1(

pi
pA
)q

q − 1
(7)

SB =
1−

∑k
i=t+1(

pi
pB
)q

q − 1
(8)

We can observe that the Tsallis entropy represented by Equations (3), (7) and (8), de-
pends on directly the parameter t for the foreground and background, and it is formulated as
the sum of each entropy, allowing the pseudo-additive property for statistically independent
systems, defined in Equation (9).

SA+B(t) =
1−

∑t
i=1(pA)

q

q − 1
+

1−
∑k

i=t+1(pB)
q

q − 1
+ (1− q).1−

∑t
i=1(pA)

q

q − 1
.
1−

∑k
i=t+1(pB)

q

q − 1

(9)

To accomplish the segmentation task, Albuquerque et al. (2004) maximizes the infor-
mation measure between the two classes (foreground and background). When SA+B(t) is max-
imized, the luminance level t is considered to be the optimum threshold value, topt. This can be
achieved with a cheap computational effort of

topt = argmax[SA(t) + SB(t) + (1− q).SA(t).SB(t)] (10)

Note that the value t which maximizes Equation (10) depends on mainly the parameter
q. This is an advantage due to its simplicity. Therefore, varying q it is possible to obtain a
value of t adapted to current illumination conditions, for example. In this paper, we will show
experimentally that the range of values set to q while looking for a value of t which maximizes
Equation (10) is small. It makes the non-extensive approach adequate to applications that need
segmentation at real time. In our work we use the simple idea of varying q from a subextensive
space to a superextensive one. In the next section, we present the recursive formulation for this
algorithm.

2.4 Non-extensive segmentation recursive algorithm for multi-region image segmenta-
tion

Following the definitions and formulations from the last section, we can take each dis-
tribution PA and PB and subdivide them into two news distribution, PA1, PA2, PB1 and PB2, as
following:

PA1 :
p1
pA1

,
p2
pA1

, . . . ,
pt
pA1

(11)
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PA2 :
pt+1

pA2
,
pt+2

pA2
, . . . ,

p%
pA2

(12)

PB1 :
p%+1

pB1

,
p%+2

pB1

, . . . ,
pυ
pB1

(13)

PB2 :
pυ+1

pB2

,
pυ+2

pB2

, . . . ,
pk
pB2

(14)

and having the constraints pA1 =
∑t

i=1 pi, pA2 =
∑%

t+1 pi, pB1 =
∑υ

%+1 pi, pB2 =
∑k

υ+1 pi. For
each one of these four above distributions we can compute its respective non-extensive entropy
as follows:

SA1 =
1−

∑t
i=1(

pi
pA1

)q

q − 1
(15)

SA2 =
1−

∑%
i=t+1(

pi
pA2

)q

q − 1
(16)

SB1 =
1−

∑υ
i=%+1(

pi
pB1

)q

q − 1
(17)

SB2 =
1−

∑k
i=υ+1(

pi
pB2

)q

q − 1
(18)

Using Equations (4), (15) and (16) to compute S(A) = S(A1 +A2) and, similarly (17)
and (18) to compute S(B) = S(B1 +B2), we have:

Sq(A+B) =

(
1−

∑t
i=1(

pi
pA1

)q

q − 1
+

1−
∑%

i=t+1(
pi
pA2

)q

q − 1
+ (1− q) ·

1−
∑t

i=1(
pi
pA1

)q

q − 1
·
1−

∑%
i=t+1(

pi
pA2

)q

q − 1
)+

(
1−

∑υ
i=%+1(

pi
pB1

)q

q − 1
+

1−
∑k

i=υ+1(
pi
pB2

)q

q − 1
+ (1− q) ·

1−
∑υ

i=%+1(
pi
pB1

)q

q − 1
·
1−

∑k
i=υ+1(

pi
pB2

)q

q − 1
)+

(1− q)·

(
1−

∑t
i=1(

pi
pA1

)q

q − 1
+

1−
∑%

i=t+1(
pi
pA2

)q

q − 1
+ (1− q) ·

1−
∑t

i=1(
pi
pA1

)q

q − 1
·
1−

∑%
i=t+1(

pi
pA2

)q

q − 1
)·

(
1−

∑υ
i=%+1(

pi
pB1

)q

q − 1
+

1−
∑k

i=υ+1(
pi
pB2

)q

q − 1
+ (1− q) ·

1−
∑υ

i=%+1(
pi
pB1

)q

q − 1
·
1−

∑k
i=υ+1(

pi
pB2

)q

q − 1
)

(19)

In this case, to find the optimal luminance level, such as the equivalent in the Equation
(10), we can compute the Equation (19) taken the argument that maximizes the next expression:

topt = argmax[(SA1 + SA2 + (1− q) · SA1 · SA2) · (SB1 + SB2 + (1− q) · SB1 · SB2) · (1− q)

·(SA1 + SA2 + (1− q) · SA1 · SA2) · (SB1 + SB2 + (1− q) · SB1 · SB2)]

(20)

The Equation (19) is simple, although with several terms. By developing a third recur-
sion would yielding the number of terms up to sixteen, letting comprehension so much complex.
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However, two observations may be done. First, the experimental results show that it is not nec-
essary more than two or three recursions in order to obtain results which are equals or better
than traditional methods. Second, the growing of the number of recursion does not enlarge the
algorithm complexity or computation, since this growing accompanies a dropping of states to
be computed at each recursion, like in the algorithms for binary partitions.

The recursive algorithm for the previous formulation is simple and we give it in the
following.

Algorithm 1: Non-Extensive Segmentation Recursive Algorithm, NESRA procedure
Input: H = image histogram, i = first histogram bin, k = last histogram bin
Call NESRA(H, i, k) procedure

if Histogram H is homogeneous then
Goto FIM

end if

for all t = i until k do

compute normalization for background
compute normalization for foreground
compute q-entropy for background according to Equation (7)
compute q-entropy for foreground according to Equation (8)
compute composed q-entropy according to Equations (9) and (10)

end for
topt = argmax of the composed q-entropy
Call NESRA(H, i, topt) procedure
Call NESRA(H, topt+ 1, k) procedure
FIM: there is nothing to do, return to calling procedure

In the next section, we apply the NESRA algorithm on several class of color and gray
scale images. When the input are color images, we convert to gray scale. First, we apply our
approach and finish comparing the results with five well known segmentation methods, namely:
k-means, fuzzy c-means, watershed, SOM and bootstrap methodology. Since all method, in-
cluding the NESRA procedure, can be set to achieve a random number of clusters, we ran all of
them to find between 3 to 5 mainly regions, in order to compare them. We can note that 3 to 5
regions are sufficient for most of images in order to find mainly salient regions.

3 EXPERIMENTAL RESULTS

To show the robustness of our proposed multi-region segmentation algorithm as well
as the range of its application, we have experimented it over several classes of complex color
and gray scale images. Then, five images have been chosen: general scenes, human head
tomography, object with homogeneous background, lenna and a paint image.
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The images from general scenes in turn may be divided into 13 or 14 classes such as
urban, animals under their environment, aircraft, sunset, cars, etc. The Fig. 1a is a random
example. This class of images has unexpected feature colors and object combination under
complex background since it was taken with a free photographic camera. Then, it is suitable to
test our proposed algorithm.

Medical images applications have been a source of scientific investigation with several
open challenges too, which demand for well segmentation algorithms. Therefore, we have
chosen two class of well known medical images to test the robustness of our proposing: mamo-
graphic and magnetic resonance images (MRI). Mamography exams has been a valuable tool
in breast cancer diagnosis as the cancer diseases are currently among the main cause of women
death in the world. Besides, most of the 70% breast exams are carried out with a 2D scanner
device and not with a more reliable 3D one. However, mammographic images (Fig. 1d is an
example) have as main characteristics high speckle noises, low resolution, so many spurious
regions and bed region of interest definition, demanding for specific algorithms. Then, it also is
suitable to test any algorithm for image segmentation.

On the other hand, the MRI of human heads (Fig. 1g is an example) has been so far
object of study for several years since MRI exams have becoming a valuable tool for cerebral
cancer diagnosis as well as for cranio-facial prothesys reconstruction in case of skull deforma-
tion due to accidents, urban or home violence and congenital diseases. In the general case, the
traditional prothesis design, manually built, has been gradually substituted by a 3D model ma-
nipulation which starts with a sequence of slices from a MRI exam followed by digital image
processing application. Then, it is interesting to see the performance of our proposed algorithm
under this well known and useful class of medical images.

The final class of images we will present our segmentation algorithm is the Columbia
database (Figs. 1d is a random example). The photos of this database were taken under con-
trolled light and viewer camera viewer. It is subdivided into 100 classes of daily objects. Each
one with 72 views rotated as 5 degrees starting at 0 and ending on 360 degrees. Even all the
images from this database have homogeneous black background, which facilitates the segmen-
tation task, the target object shape and colors are complex which yields to complications when
extracting the regions of interest.

Also, we have tasted our algorithm over the well known and used in digital image pro-
cessing approaches lenna image, as it is interesting to meet our proposed algorithm to other
similar approaches. We have included into our test a paint image, as it has high spackle noise
distribution and is not natural, Fig. 1f.

All experiments were carried-out under three different values of q in the Equation (19):
0, 0.5 and 1.0. These values were chosen in order to enclose the superextensive range as well
as the extensive one. Then, when q < 1 we are considering the probability distribution as a
superextensive system, as proposed by C. Tsallis, and when q = 1.0 we are considering the
probability distribution as an extensive system regarding the Shannon traditional entropy. It
allows facing segmented images as being superextensive systems against those segmented as
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being subextensive ones. Instead of showing, that an image segmented with some range of q is
better or worst each other (as it was just showed in Albuquerque et al. (2004) for mammographic
images), we want to show mainly that our experiments with our recursive proposed algorithm,
clearly outperforms the later results when the range is q ≤ 1. For values out of this range, we
will not present the results as it is very probable that the results will be better.

Figure 2 presents a set of three images which were segmented with the Tsallis entropy
(non-recursive) (images a-c) for values of q = 0, 0.5 and 1.0, respectively. The original image
is that of Fig. 1a (sunset). Clearly, this image has five main regions: the solar circumference,
the solar crown, the sky, mountains and buildings. However, only two regions were found by
the algorithm: with threshold t = 105, q = 0 (Fig. 2a); t = 104, q = 0.5 (Fig. 2b), and t = 99,
q = 1.0 (Fig. 2c).

When we used our proposed recursive algorithm (NESRA), three more regions were
outlined and the results, under the same q values, are clearly better. The Fig. 2d shows four
regions which were found with threshold t = {105, 142, 58}, all for q = 0. Similarly, Fig. 2e
shows four regions found with threshold t = {104, 139, 58}, all with q = 0.5; and Fig. 2f shows
four regions found with threshold t = {99, 134, 56}, for q = 1.0.

Figure 1 – Six images used in our experiments.

(a) sunset (b) breast tumor (c) MRI

(d) simple object (e) lenna (f) paint

Subjectively speaking, the results when q = 1.0 (extensive systems) seems to be slightly
better than when q 6= 1.0 (non-extensive systems) since it presents less noise and spurious
regions. Then, it suggests an extensiveness of the system.

The next data set we have used in our experiments is the MR images. As aforemen-
tioned, MRI has been a valuable tool for several medical applications. Among them, we can
outline mainly the head tumor diagnosis in hard and soft tissues. Then, since both MRI and CT
exams can help 3D reconstruction of cranio, face and brain, these are indispensable tools when
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Figure 2 – Sunset segmented image of Fig. 1a: with Tsallis entropy non-recursive algo-
rithm (a-c) and with our extended proposed algorithm (NESRA) (d-f) for three

different q values and two recursions. t stands for threshold.

(a) t = 105, q = 0 (b) t = 104, q = 0.5 (c) t = 99, q = 1.0

(d) t = {105,142,58},
q = 0

(e) t = {104,139,58}
q = 0.5

(f) t = {99,134,56}
q = 1.0

extracting soft as well as hard tissues by searching tumors or defects. In both cases, there is the
necessity to extract one from other. Fig. 3a-c shows a segmentation of Fig. 1c for three values
of qr with non-recursive Tsallis entropy algorithm.

Sometimes, inside the hard tissue (as well as in soft one), we also need to separate
specific parts. It happens when, for example, we should outline some parts of the hard tissue
by aligning some possible accidental patient’s rotation posed on the bed when MRI is taking.
When there is a need of separating such regions, the simple Tsallis entropy segmentation does
not work. To show the effectiveness of our approach in this case, we segmented the image of
Fig. 1c with NESRA algorithm for three values of q, as can be seen in Fig. 3d-f. The better
results, however, were accomplished for q = 0. However, the effectiveness of our approach
over this kind of image will depend on the desired goal, but, the three segmentation in Fig. 3d-f
show the higher flexibility of our proposed method.

The third data set we have used in our experiments are synthetic images from the
Columbia database (NENE; NAYAR; MURASE, 1996). As aforementioned, this is an database
built to scientific experimentation. It consists of 7200 images of 100 objects at several viewers.
Although the object photos had been taken under homogeneous background, which facilitates
the foreground extraction, several applications need recognition of object’s parts. Then, the ap-
plication of a simple object segmentation algorithm, as the simple non-recursive Tsallis entropy,
does not work well. This fact can be observed in the segmentation of Fig. 1d outlined in Fig.
4a-c. In this figure, the only acceptable segmentation is that of Fig. 4a, when q = 0. When
q = 0.5 and 1.0 the result is clearly inferior. When we apply our proposed method (Figs.4d-f.)
we can reach well results for all values of q; however, the best is that of Fig. 4d (q=0).

We tested our proposed algorithm also over the lenna image, with the same previous
q = {0, 0.5, 1.0} range. We can see the application of the simple extensive algorithm in Fig.
5a-c. By applying the proposed non-extensive algorithm over the same original image, we
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Figure 3 – A sequence of segmented head MRI. The first row (images a-c) are the seg-
mentations with the simple non-recursive Tsallis entropy, and the second row
(images d-f) are the corresponding segmented with our proposed algorithm. t

stands for the achieved threshold. We used q = {0, 0.5, 1.0} values.

(a) t = 130, q = 0 (b) t = 68, q = 0.5 (c) t = 29, q = 1.0

(d) t = {130,201,60},
q = 0

(e) t = {68,144,34},
q = 0.5

(f) t = {29, 78, 6},
q = 1.0

Figure 4 – Segmentation of an image of the Columbia database (Fig. 1.k). The first row
shows three segmentations for q = {0, 0.5, 1.0}. The second row shows the
corresponding three segmentations when we applied our proposed method with

the same q range.

(a) t = 106 q = 0 (b) t = 138, q = 0.5 (c) t = 138, q = 1.0

(d) t = {106, 151, 62},
q = 0

(e) t = {138,170,90}, q
= 0.5

(f) t = {170, 130, 90},
q = 1.0
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Figure 5 – The segmentation of lenna image for q = {0, 0.5, 1.0}. The first row presents
the simple non-extensive algorithm and second row presents the corresponding

recursive version. t stands for the found threshold value.

(a) t = 129, q = 0 (b) t = 124, q = 0.5 (c) t = 122, q = 1.0

(d) t = {129, 184, 75},
q = 0

(e) t = {124,176,78},
q = 0.5

(f) t = {122, 174, 79},
q = 1.0

reached better results, in terms of segmentation, as can be seen in the corresponding images in
Fig. 5d-f. Although in this case just one recursion was applied, generating four different gray
scale regions, it is sufficient for a better separation of the main regions than that reached in Fig.
5a-c. The corresponding results can be observed in Fig. 5d-f. Note, for example that the hat’s
plumage can now be better outlined than before.

Until now, all presented experiments were carried out with no previous filtering appli-
cation in order to reduce noising. Also, to show a considerable level of image’s details, it was
sufficient to apply our proposed algorithm with just one level of recursion. It may be an advan-
tage as it yields to a low computational time. However, it is interesting to observe our proposed
methodology applied after the application of some gaussian filtering by reducing some noising
with once more level of recursion. So, as a final experimentation, we show the application of
our proposed algorithm over a painting of a complex scene (Fig. 6a). Before the application of
our proposed algorithm we have applied a gaussian filtering and iterate the segmentation two
times. The results can be seen in Fig. 6b. This is a well delimited region image with few noising
and spurious regions.

In the following we compare our proposed approach with five known algorithms cited in
the introduction, namely: bootstrap, fuzzy c-means, k-means, SOM and watershed. In Figures
7 and 8 we have three columns and five rows. Each row corresponds to an image from Figure
1, and each column corresponds to a different method of basic segmentation, namely (from the
most left column to the most right column): our proposed NESRA algorithm, boostrap, fuzzy
c-means, k-means, SOM and watershed.
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Figure 6 – Paint image: (a) is the original image and (b) is its segmentation with q=0 and
3 recursive levels after a gaussian filtering.

(a) original image (b) segmented

Figure 7 – Results of application of three approaches for image segmentation: column 1:
proposed NESRA method; column 2: bootstrap; column 3: fuzzy c-means

NESRA Bootstrap Fuzzy C-means
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Figure 8 – Results of application of three approaches for image segmentation: column 1:
k-means; column 2: SOM; column 3: watershed

K-Means SOM Watershed
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Figure 9 – The synthetic image used to compare the robustness of the methods and in-
creasing application of gaussian noise. The two concentric circles have radius
100 and 50, and the intensities for the background, outer and inner circles are
150, 100 and 50 respectively. The letfmost image is the original image; the three
others, from left to right, have µ = 0 and σ2 = 0.01, 0.05 and 0.1 gaussian noise

respectively.

The NESRA was ran with two recursions, which means that there are up to four main
regions. Bootstrap was ran in order to achieve up five clusters as well as fuzzy c-means and
k-means. On the other hand, we set the SOM network to spread their input data among a
3 × 2 rectangular grid of neurons, however, similar results were obtained with a 4 × 4 and
6×6 rectangular grid. Besides, the watershed algorithm was set with an 8-connected approach.
Regarding these constraints, we can make the following discussion about the Figures 7 and 8.

In the first row of Figures 7 and 8 (which correspond to Figure 1.a and d) we can see
that the NESRA and k-means reach similar results in comparison with Bootstrap, Fuzzy c-mean,
SOM and watershed, since NESRA and k-means achieve the four main salient regions, which
correspond to light around the sun, sky, horizon and buildings. In particular, NESRA seems to
delineate better these four regions.

In the second row (a cup with some drawings with homogeneous background corre-
sponding to Figure 1.d), we can discard only SOM and watershed results (columns 2 and 3 of
Figure 8) and analyze only the other four, which seems to generate similar results. Among them
fuzzy c-means produced a little bit noise, NESRA and Bootstrap are very similar, and k-means
seems to produce a little better segmented main regions.

In the third row of both figures, we have a MRI corresponding to image from Figure
1.c. Now it is difficult to say with no doubt which are the correct mains region (e.g., which are
the soft or hard tissue), but generally, the white pixels of Figure 1.c are those corresponding
to hard tissue. According to it, only the watershed must be discarded. Among the other four
approaches, fuzzy c-means, k-means and SOM oversegmented the images and NESRA and
bootstrap seems to separated better the soft tissue.

In the four row of both figures, again, all approach except NASRA and bootstrap over-
segmented the images, but NASRA has clearly low noise and homogeneous main regions, as
we can see around the lenna’s skin and the regions on her right.

In the last row we show a paint figure. This kind of image, generally has high not
homogeneous regions with rich texture and colors, then, it is suitable to compare the presented
approaches. In this example, NESRA has clearly overcoming all the other methods since it
has produced more homogeneous regions with rich level of details (see the people’s eyes) well
separate one each others.
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Finally, in order to quantify a comparison between the methods, we have ran each algo-
rithm with a synthetic image consisting of two concentric circles with radius 100 and 50. The
intensities of the background and the outer and inner circler are 150, 100 and 50, respectively.
These intensities do not have large distances in their histograms. The experiment consists of
applying in this synthetic image a gaussian noise with zero mean and variance σ2 > 0. The
Figure 9 shows the used synthetic image besides three examples of increasing application of
gaussian noise with µ = 0 and σ2 = 0.01, 0.05 and 0.1. After, a 2D 9 × 9 adaptive noise
removal filter was applied, which causes noise dropping but blurring the frontiers between the
inner and outer circles and the outer circle and the background as well. Although the value of
n = 9 has been chosen empirically, it is the same for all algorithm in order to put them under
the same conditions. Also, in the case of NESRA method, the value of q = 0.001 was applied
for the synthetic image. This value was chosen empirically and, the good results indicate the
system non-extensiveness.

Then, a procedure, based on the Door-In-Door-Out algorithm, was implemented so that
to extract the image regions and to obtain the coordinates of the curves for both inner and outer
boundaries. Our goal is to measure the robustness of the methods in achieving the original
boundaries under increasing values of noise variance. Then, we use the original boundary as
a ground truth and compute how far from it is the estimated. The coordinates of the inner and
outer original curves were obtained in a straightforward manner by analytical calculation, given
their radius and center.

The comparison between an original and an estimated curves was carried out through the
PolyLine Distance Measure (PDM) method, proposed by Suri, Haralick and Sheehan (2000),
Suri, Setarhedran e Singh (2002), Suri (1998), Suri, Haralick and Sheehan (1996). The PDM
is defined as the closest distance from each estimated boundary point to the ideal/ground-truth
region of interest boundary. The closest distance of each estimated boundary point can be the
perpendicular distance (shortest Euclidian distance) to one skin-line, or can be one of the end
boundary points joining the points of the closest interval. It is a measure of the average polyline
distance of all boundary points of the estimated and ground-truth curve boundaries. Let B1 be
the first boundary and let B2 be the second boundary. Then, we can derive the PDM measure,
dErrorpoly , as follows:

db(A,B2) = minS∈sidesB2d(A, S) (21)

dvb(B1, B2) =
∑

A∈verticesB1

db(A,B2) (22)

dErrorpoly =
dvb(B1, B2) + dvb(B2, B1)

]vertices ∈ B1 + ]vertices ∈ B2

(23)

Also, the PDM Equation (23) does not need the two boundaries B1 and B2 having the same
length. Note the two main characteristics of the PDM equation: first, as B1 → B2, dErrorpoly → 0;
second, it is a distance in pixel units. If N ×M is the image dimension, it is straightforward to
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Figure 10 – The result segmentation of the six considered algorithms in this paper. In this
illustration, for all the original image we have applied a gaussian noise with
zero mean and σ2 = 0.1 which is the highest noise used, and after, a 9 × 9
2D adaptive filter was used for smoothing the noise. In the specific case of
NESRA algorithm we use the parameter q = 0.001 since it generates the best

visual result with more homogeneous and noiseless regions.

NESRA Fuzzy C-Means K-Means

SOM Bootstrap Watershed

show the maximum value for dErrorpoly as:

dmax = |R− r| (24)

where R is the larger image’s diagonal and r is the average radius of the estimated curve. For
a fixed N and M , and dividing (23) by (24), we can define the robustness of an algorithm in
achieving the ideal boundary as:

R = 1−
dErrorpoly

dmax
(25)

which is a percentage of the maximum error. Note that R → 0 when the error is maximum
and R → 1 when the error is minimum. Therefore, in our experiments, we compute R as
a function of increasing values of σ2 in order to see the general performance of the methods
while achieving the ideal boundary. We also compare them under the same conditions and
scenarios.

In order to visually compare the methodology’s robustness, we superpose the estimated
curves on the original images, after applying the 2D adaptive filtering. To give a visual idea
of the result, we choose to illustrate this paper with the higher used variance (σ2 = 0.1) in
the segmented synthetic images. In the Figure 10, we show the segmentation applying in the
synthetic for the six methodologies. In this figure, all the segmented image’s regions, only for
viewing, were assigned to a different gray scale intensity: black for background, gray for outer
circle and white for inner circle.
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Figure 11 – The estimated (black ones) and original (white ones) curves superimposed
over the original image corresponding to the segmentations of Figure 10. Only
the watershed was traced manually since we do not have good precision of the

boundary in this case.

NESRA, 00.000 Fuzzy C-Means, 00.000 K-Means, 00.000

SOM, 00.000 Bootstrap, 00.000 Watershed, 00.000

In the Figure 11 we show the original and estimated curves superimposed over the orig-
inal image after the application of the 2D adaptive filter. In the case of watershed approach,
we trace manually the estimated curve since the watershed method oversegment the images,
yielding to severe difficulties in boundary extraction. We only show the segmented results and
inform that it achieves the bad results among all the compared methods. But we highlight that
this is not the conditions to what the watershed works well. To see papers explaining well
application of watershed algorithm see (MEYER, 1992) and (GONZALEZ; WOODS, 1992).

A complete numerical result for σ2 = {0.01, 0.02, . . . 0.1} can be see in the Figures
12-left and 12-right, where we plotted R as a function of the complete used range for σ2. Also,

Figure 12 – Comparative performance of the five used methods as a function of increasing
gaussian noise. Left image is for the outer circle and right one is for inner

circle. The x-line is the σ2 and y-line is R according to Equation (25).
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Figure 13 – Comparative performance for the five used methods according to the esti-
mated area inside inner, outer and background regions. The performance
percentage is an average of the estimated area of the three regions. The x-
line is the σ2 and y-line is the average of estimated area (for the three regions)

divided by real area.

Figure 12 shows the comparative performance for the used algorithms except for watershed
method. Figure 12-left shows the results for the outer curve and Figure 12-right does the same
for the inner curve of each method.

A final graphic is showed in Figure 13, where we plotted an average percentage of the
original area for the inner, outer and background areas as a function of increasing gaussian
noise.

The running time of the NESRA algorithm is proportional of the binary procedures,
O(logN), where N is the image dimension. This is due to as we partite the image at each
iteration, the number of pixels to be evaluated drops proportionally according to N .

4 DISCUSSION AND CONCLUSION

We have presented a new method for image segmentation based on non-extensive en-
tropy. This new method is a recursive version, called NESRA, of that proposed in (ALBU-

QUERQUE et al., 2004).
The NESRA algorithm is a segmentation procedure for basic segmentation, which should

be used in an initial segmentation. As such, it was compared with other algorithms under the
same conditions, namely: Bootstrap, Fuzzy C-Means, K-Means, SOM and Watershed. All of
these algorithms were ran for several classes of images, where some examples are in Figure 1,
and for a synthetic image, that can be seen in Figure 9.

The proposed algorithm reaches results at least similars to those obtaining the best
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performance among three images (sunset, object, MRI) and clearly overcomes the others ap-
proaches for lenna and paint image, which may be an indication that this is a good new strategy
for image segmentation, or that, by considering an image as a non-extensive system, also is a
promisor line of investigation.

The NESRA algorithm obtained more homogeneous and noiseless regions which yields
to no oversegmentation images. this is due to the fact that the NESRA always partitions the
data set into two new regions, yielding to less sensitiveness to noise and spurious regions.

Regarding the time complexity, although its equations show an exponential growing at
each iteration, it is compensated by the dropping of the number of pixels to be evaluated. This
time complexity is of the class lgN , where N is the region dimension.

It may be argued that any algorithm for binary segmentation (e.g., such as the well
known iterative threshold) may be extended to a recursive version and applied like NESRA.
However, it always partitions the luminance space into two blocs, always generating a back-
ground and a foreground which maximizes the information. In comparison with the traditional
method proposed by Pun (1981), which uses the Shannon entropy, the NESRA overcomes it
in all images presented in Figures 2-5. It indicates that the NESRA’s advantage is not simply
its recursion. Beyond that, a better separation between the foreground and background may be
achieved due to the flexibility of the q parameter.

Regarding the choice of the q parameter, an automatic value can not be found yet. Then,
as future work, we proposed the investigation of the optimal q through an iterative method, since
that the entropic equations are functions of q. At this moment, depending on the class of image,
the value of q may be taken from a small discrete range between 0 ≤ q ≤ 1. This is the case of
all experiments of this paper. As we can see for all results, there is little changing in the results
when q varies, since the entropy values depend on mainly from the luminance distribution than
the q value. This is one of the indications that we may take advantage in considering images as
non-extensive systems.

According to Figure 10, under the maximum gaussian noise (σ2 = 0.1), only the meth-
ods NESRA, Fuzzy C-Means and K-Means obtained good segmentation. In the cases of the
methods Fuzzy and K-Means, they obtained a quite identical results, but both with a hight
background noise compared with NESRA. The NESRA and Bootstrap were less sensitive to
background noise; however, the NESRA segmented bed the outer region, while the Bootstrap
did not achieve any inner circle. On the other hand, the SOM and the Watershed had a overseg-
mentation. Similar results also can be seen in the Figure 11, where the NESRA, Fuzzy C-Means
and K-Means are compatible in achieving the boundaries. The contrary occurs with the SOM,
Bootstrap and Watershed. In this case, only the Bootstrap found the central circle.

When these results are quantitatively analyzed, as observed in the Figure 12 and 13, both
Fuzzy C-Means and K-Means, as well as NESRA, were stable with slight advantage to Fuzzy
C-Means and K-Means, in achieving the inner circle. On the other hand, also the Bootstrap was
stable in achieving the outer circle (Figure 12-left) but had low performance in achieving the
inner circle (Figure 12-right).
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When we compare the estimated areas with the original ones (Figure 13) the perfor-
mance of all algorithms are quite similars. The Fuzzy C-Means and K-Means have similar
good performance and NESRA are compatible with them, while SOM, Bootstrap and Water-
shed have low performance.

Finally, we can conclude that the NESRA algorithm has compatible performance with
the best tested algorithms for the synthetic image and better performance of all methods in
real images when analyzed qualitatively. This is due to the NESRA algorithm reaches a better
homogeneity of the target regions. It was less sensitive to noise than all the others methods with
the aditional advantage of low time complexity. Then, NESRA algorithm is well indicated to
segment general images even at real time.

In the future, we will test NESRA algorithm inside a complete system for image seg-
mentation, possible applying, after an initial segmentation, the active contour models in order
to smooth the found boundaries. Also, a possible future direction is to study the best class of
images to apply the NESRA methodology. The best class can be defined though the ideal q
value.
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