
Expert Systems With Applications 146 (2020) 113149

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Combining novelty and popularity on personalised recommendations

via user profile learning

Ricardo Mitollo Bertani a , Reinaldo A. C. Bianchi b , Anna Helena Reali Costa

a , ∗

a Escola Politécnica, Universidade de São Paulo, São Paulo, Brazil
b Department of Electrical Engineering, FEI University Centre, São Bernardo do Campo, Brazil

a r t i c l e i n f o

Article history:

Received 12 September 2019

Revised 22 November 2019

Accepted 18 December 2019

Available online 26 December 2019

Keywords:

Recommender systems

Machine learning

Data sparsity

Diffusion-based algorithms

User profile

a b s t r a c t

Recommender systems have been widely used by large companies in the e-commerce segment as aid

tools in the search for relevant contents according to the user’s particular preferences. A wide variety of

algorithms have been proposed in the literature aiming at improving the process of generating recom-

mendations; in particular, a collaborative, diffusion-based hybrid algorithm has been proposed in the lit-

erature to solve the problem of sparse data, which affects the quality of recommendations. This algorithm

was the basis for several others that effectively solved the sparse data problem. However, this family of

algorithms does not differentiate users according to their profiles. In this paper, a new algorithm is pro-

posed for learning the user profile and, consequently, generating personalised recommendations through

diffusion, combining novelty with the popularity of items. Experiments performed in well-known datasets

show that the results of the proposed algorithm outperform those from both diffusion-based hybrid al-

gorithm and traditional collaborative filtering algorithm, in the same settings.

© 2020 Elsevier Ltd. All rights reserved.

1

b

s

o

w

p

t

o

f

t

s

e

c

m

b

t

a

t

A

b

w

r

c

g

t

v

l

i

a

s

u

n

b

t

t

g

r

Z

h

0

. Introduction

Due to the massive amount of information produced every day

y both humans and machines, it became increasingly difficult to

elect the most suitable content in a wide range of options. Rec-

mmender systems (RS) are being widely used to help users deal

ith large volumes of information available on the Internet, es-

ecially in the search for the most relevant content according to

he particular preferences of the user. Due to the great popularity

f this kind of system and the need to ensure that such tools of-

er recommendations with high quality and relevance to the user,

he algorithms that generate these recommendations must be con-

tantly improved.

According to Zhang, Yao, and Sun (2017) , a RS can be consid-

red a useful information filtering tool for users aiming at dis-

overing products or service they might be interested in and its

ain applications include the recommendation of movies, songs,

ooks, documents, websites, touristic attractions, and learning ma-

erials (Lu, Wu, Mao, Wang, & Zhang, 2015).

Kotkov, Wang, and Veijalainen (2016) and Ricci, Rokach, Shapira,

nd Kantor (2010) consider any content that may be recommended

o the user as an “item”; this term can refer to a song, a movie, a
∗ Corresponding author.

E-mail addresses: ricardo.bertani@usp.br (R.M. Bertani), rbianchi@fei.edu.br (R.

. C. Bianchi), anna.reali@usp.br (A.H.R. Costa).

t

a

b

u

ttps://doi.org/10.1016/j.eswa.2019.113149

957-4174/© 2020 Elsevier Ltd. All rights reserved.
ook, a service and even friends in a social network. This article

ill also use the term item as a reference to any type of content

ecommended by RS. Also, these items may have attributes that

haracterize them. For example, a book can be characterized by its

enre, topic or author.

As stated by, a RS can be seen as a particular case of informa-

ion retrieval, where by the objective is to infer the level of rele-

ance of a set of unknown items to a target user and to generate a

ist of recommendations composed of items ordered by relevance.

The process of generating a recommendation can be character-

zed as a combination of the following features: the type of data

vailable for analysing user preference; the filtering algorithm con-

idered; the approach used (whether or not based on the direct

se of the data); the recommended technique used (e.g., nearest

eighbour algorithms, fuzzy models, singular value decomposition,

io-inspired algorithms, among others); and the dispersion level of

he data-set (Bobadilla, Ortega, Hernando, & Gutiérrez, 2013).

When applying the analysis of user preference, it is fundamen-

al to know the level of relevance that a set of items has for a

iven user. This information can be obtained explicitly through a

ating value, as in Javari and Jalili (2014) , Liu, Hu, Mian, Tian, and

hu (2014) and Zhang et al. (2017) , or it can be implicitly ob-

ained when the RS infers the level of relevance of the item to

 user through behavioural analysis, such as counting the num-

er of times the user clicks on-screen elements, or monitoring

ser downloads or searches, as in Sánchez-Moreno, Gil González,

https://doi.org/10.1016/j.eswa.2019.113149
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2019.113149&domain=pdf
mailto:ricardo.bertani@usp.br
mailto:rbianchi@fei.edu.br
mailto:anna.reali@usp.br
https://doi.org/10.1016/j.eswa.2019.113149

2 R.M. Bertani, R. A. C. Bianchi and A.H.R. Costa / Expert Systems With Applications 146 (2020) 113149

S

P

w

a

s

w

R

w

i

P

t

t

i

B

t

g

s

u

s

t

l

O

2

e

f

l

&

r

v

Z

v

d

o

t

u

w

s

b

t

t

o

a

u

n

c

3

Z

f

a

t

b
Muñoz Vicente, López Batista, and Moreno García (2016) and

Lacerda (2017) .

Recommender systems can be broadly categorized, mainly,

as content-based (CB) or collaborative filtering (CF) (Beel, Gipp,

Langer, & Breitinger, 2016; Katarya & Verma, 2016; Lu et al., 2015),

which will be discussed in more detail in the following section, es-

pecially the CF approach, due to its huge popularity and relevance.

The remainder of this paper is structured as follows. In

Section 2 we review some relevant related work, especially the

details regarding CF approaches. Section 3 describes in detail

the diffusion-based hybrid algorithm, which is the basis of our

proposal. The proposed method is described in Section 4 and

its experimental evaluation is presented in Section 5 . Finally,

Section 6 gives our conclusions and indications of future work.

2. Related work

Both CB and CF seek to identify the most interesting items ac-

cording to user preferences; however, each approach performs this

same process according to a particular criterion.

The underlying idea of CB is that a user is interested in items

that are similar to those she or he previously liked Zhang and

Zeng (2015) , Wang et al. (2017) and Deng, Zhong, Lü, Xiong, and

Yeung (2017) . CB approaches utilize a series of discrete features

of an item to recommend additional items with similar features.

CB approaches work with data the user provides, either explicitly

(rating) or implicitly (by clicking on a link). Based on these data, a

user profile is generated, which is then used to make suggestions

to the user. As the user provides more inputs or takes actions on

the RS, the engine becomes more and more accurate.

In turn, the idea of CF is that a user likes items that other

users like. CF approaches building a model from a user’s past be-

haviour (items previously purchased or selected and/or numerical

ratings given to those items) as well as similar decisions made by

other users. This model is then used to predict items (or ratings

for items) that the user may have an interest in.

Algorithm 1 describes a basic CF algorithm, detailed

Algorithm 1 – The collaborative filtering (CF) Algorithm

(Ricci et al., 2010), (Patra et al., 2015), (Yang et al., 2016).

Require: user u , dataset , | L | , | V z| .
1: rat ingsMat rix ← Extract the rating matrix from users and items

of the dataset

2: for each user v ∈ dataset , v � = u do

3: I u v ← Separate the items rated by both u and v in the

rat ingsMat rix

4: Calculate P C C (u, v) using I u v and rat ingsMat rix (Eq. 1)

5: end for

6: List users ← Sort users decreasingly according to P C C

7: V z ← Separate the first | V z| from List users

8: I u ← Obtain the items u interacted with

9: for each item i / ∈ I u do

10: Calculate pred(u, i) using V z as the user neighbourhood (Eq.

2)

11: end for

12: list ← Sort all items by pred(u, i)

13: L ← Separate the first | L | from list

14: return L

in Ricci et al. (2010) , Patra, Launonen, Ollikainen, and

Nandi (2015) and Yang, Wu, Zheng, Wang, and Lei (2016) and

uses the Pearson Correlation Coefficient (PCC) (Pearson, 1920) to

compute the similarity between a couple of users. PCC is used in
tep 4 of Algorithm 1 and can be calculated by:

 C C (u, v) =

∑

i ∈ I u v (r u,i − r̄ u)(r v ,i − r̄ v) √ ∑

i ∈ I u v (r u,i − r̄ u) 2
∑

i ∈ I u v (r v ,i − r̄ v) 2
, (1)

here I uv is the set of items rated by both u and v; r u,i and r v, i

re the rating values attributed to item i by users u and v , re-

pectively; r̄ u and r̄ v are the average ratings attributed to all items

hich u and v have interacted with, respectively; with P C C (u, v) ∈
 , −1 . 0 ≤ P C C (u, v) ≤ 1 . 0 .

In step 10, Algorithm 1 is calculated (Patra et al., 2015):

pred(u, i) = r̄ u +

∑

b∈ V z P C C (u, b) ∗ (r b,i − r̄ b) ∑

b∈ V z P C C (u, b)
, (2)

here r̄ u is the rating average attributed to items which user u has

nteracted with; Vz is the set of users similar to u (neighborhood);

CC (u, b) is the similarity between u and b; r b,i is the rating at-

ributed to item i by user b ; and r̄ b is the average rating attributed

o all items with which user b has had some interaction. Accord-

ng to Lu, Shambour, Xu, Lin, and Zhang (2013) and Kaminskas and

ridge (2016) , values of | Vz | between 20 and 40 are considered

hose that maximize the recommendation results.

CF algorithms stand out as the most widely used (Fu, Qu, Mo-

es, & Lu, 2018; Wang et al., 2017; Yang et al., 2016). However, they

till suffer from the sparsity data problem, characterized by the sit-

ation in which there are a large number of users and items in the

ystem, but a small set of ratings assigned to items by users. Thus,

he user-item rating matrix is very sparse (Ma et al., 2015).

The basic ideas of CB and CF approaches are rather vague and

eave room for different approaches (Beel et al., 2016; Betru &

nana, 2017; Deng et al., 2017; Katarya & Verma, 2016; Lu et al.,

015; Wang et al., 2017; Zeng, Zeng, Shang, & Zhang, 2013; Zhang

t al., 2017; Zhou et al., 2010).

Notably, proposals based on the physical processes of mass dif-

usion showed significant results to mitigate this particular prob-

em (Deng et al., 2017; Wang et al., 2017; Zeng et al., 2013; Zhang

 Zeng, 2015; Zhou et al., 2010). Particularly, the hybrid algo-

ithm presented in Zhou et al. (2010) served as the basis for de-

eloping several approaches, such as Zeng et al. (2013) , Zhang and

eng (2015) and Deng et al. (2017) . However, this algorithm and its

ariations do not differentiate the particular preferences of users

uring the recommendation process.

We are here particularly interested in determining the degree

f novelty or popularity that represents the preferences of a par-

icular target user. This personalised preference is expressed in the

ser profile that commands the decisions of the new RS algorithm

e propose, the UPOD algorithm – “User Profile-Oriented Diffu-

ion”. Thus, according to user preference, a certain level of com-

ination of novelty and popularity is defined, directing the selec-

ion and ordering recommended items. Our proposal experimen-

ally demonstrated that user satisfaction was higher with the list

f recommendations generated by UPOD than with the list gener-

ted with commonly used techniques.

It is important to emphasize that without the inclusion of the

ser profile during the recommendation process, the system can-

ot be able to fully satisfy users regarding their preferences and

an simply recommend the most predictable content.

. Diffusion-based recommendation algorithms

This section presents the hybrid algorithm proposed by

hou et al. (2010) , which is based on the physical mass dif-

usion process and gives a solution to the apparent diversity-

ccuracy dilemma of the recommender systems. The concern in

his dilemma is to find an appropriate combination of methods

ased on accuracy (providing popularity) and diversity (providing

R.M. Bertani, R. A. C. Bianchi and A.H.R. Costa / Expert Systems With Applications 146 (2020) 113149 3

n

s

H

g

f

{

a

t

v

a

u

o

t

a

o

o

n

w

u

v

r

a

r

u

r

a

r

c

r

i

p

a

r

g

i

p

E

v

p

(

d

i

s

t

1

b

a

l

H

l

t

(

r

a

r

a

b

o

A

t

w

(

i

w

r

i

t

i

a

a

m

d

s

a

m

t

u

fi

t

b

s

s

4

f

l

m

ovelty). Their algorithm, called MDHS , combines the Mass Diffu-

ion algorithm (MD) (Zhou, Ren, Medo, & Zhang, 2007) and the

eat Spreading algorithm (HS) (Zhang, Blattner, & Yu, 2007) for

enerating a list of recommendations.

MDHS represents an RS system as a user-item bipartite graph,

ormally defined as G = { U, I, E} , where U = { u 1 , u 2 , . . . , u N } , I =
 i 1 , i 2 , . . . , i M

} and E = { e 1 , e 2 , . . . , e K } are the user set, the item set

nd the set of graph edges, respectively. From a previously known

raining data-set, graph G is constructed, assigning each user to a

ertex u N ∈ U , each item to a vertex i M

∈ I , and if a user u N inter-

cted with any item i M

, an edge e K ∈ E is inserted into G, making

 N adjacent to i M

. Interaction here means that the user purchased

r rated a given item, for example.

For a target user u that is present in the database, the following

hree steps are performed:

Step 1. A resource value r (u, i) is assigned to each item i in G ,

according to the following rule: if there is an edge between

i and the target user, then r(u, i) = 1 , otherwise r(u, i) = 0 .

In this Step u is the target user.

Step 2. The resource values are redistributed, through a propa-

gation process, from item-side to the user side in G , where

each user v ∈ U at a destination vertex receives a new recal-

culated resource value r ′ (v, i) from all the resource values of

adjacent items in graph G .

Step 3. The resource values assigned to the users are now redis-

tributed from the user side to the item side in G . Each item

i receives a new resource value r ′′ (v, i) recalculated from all

the resource values of adjacent users, computed in Step 2.

The calculation of the new resource values described in Steps 2

nd 3, and represented respectively by r ′ (v, i) and r ′′ (v, i), depends

n the algorithm considered, MD, HS or MDHS , and the number

f interactions between users and items in the RS database. The

umber of interactions represents the degree of vertices, w (u) and

 (i), being respectively the degree of the vertex representing user

 and the degree of the vertex representing item i .

Thus, when considering only the MD algorithm, the resource

alues for steps 2 and 3 are given, respectively, by:

′
MD (v , i) =

∑

i ∈ I

r(u, i)

w (i)
, v ∈ U, i ∈ I, (3)

nd

′′
MD (v , i) =

∑

v ∈ U

r ′ MD (v , i)
w (v)

, v ∈ U, i ∈ I. (4)

Similarly, when only the HS algorithm is used, the resource val-

es for steps 2 and 3 are given, respectively, by:

′
HS (v , i) =

∑

i ∈ I r(u, i)

w (v)
, v ∈ U, i ∈ I, (5)

nd

′′
HS (v , i) =

∑

v ∈ U r
′
HS (v , i)

w (i)
, v ∈ U, i ∈ I. (6)

Figs. 1 and 2 illustrate the application of the propagation pro-

ess (steps 1, 2 and 3) in a graph considering the MD and HS algo-

ithms, respectively.

In Fig. 1 , the target user is u 4, which previously interacted with

tems i 3 and i 5. Following the MD algorithm, resource values are

ropagated to the user side using Eq. (3) ; in this case, i 3 prop-

gates 1/2 to adjacent users in the graph and i 5 propagates 1/3,

esulting in 5/6 at u 4. In the last step, the resources are propa-

ated to the side of the items according to Eq. (4) ; the new value

n item i 3, for example, is 5/12 propagated from u 4 added with 1/6

ropagated from u 1, resulting in 7/12.
Fig. 2 illustrates the propagation of the HS algorithm, following

qs. (5) and (6) . In the figure, the target user is u 4, which pre-

iously interacted with items i 3 and i 5. Resource values are then

ropagated from the item to the user side, resulting in 1/3 in u 1

sum of the resources received from i 1, i 2, and i 3, divided by the

egree of u 1), and 1/2 in u 2 (sum of the resources received from

 2 and i 5, divided by the degree of u 2). In the last step, the re-

ources are propagated from the users to the items side according

o Eq. (6) ; the new value in item i 3, for example, is 2/3 (sum of

/3 propagated from u 1 added with 1 propagated from u 4, divided

y degree of i 3, which is 2).

It is worth observing that, according to Figs. 1 and 2 , the MD

lgorithm tends to generate recommendations composed of popu-

ar items (vertex with the higher degrees in the graph), while the

S algorithm tends to generate recommendations composed of the

esser-known items (vertex with lower degrees in the graph).

The MDHS algorithm allows combining MD and HS by using a

uning parameter λ used to combine Eqs. (3) and (5) into r ′ HB (v , i)
Step 2) and Eqs. (4) and (6) in r ′′

HB
(v , i) (Step 3):

′
HB (v , i) =

(∑

i ∈ I

r(u, i)

w (i) λ

) /

w (v) (1 −λ) , v ∈ U, i ∈ I, (7)

nd

′′
HB (v , i) =

(∑

v ∈ U

r ′ HB (v , i)
w (v) λ

) /

w (i) (1 −λ) , v ∈ U, i ∈ I. (8)

When λ = 0 the HS algorithm is used, and when λ = 1 the MD

lgorithm is used. Any value between 0 and 1 means that a com-

ination of both methods is used. In Zhou et al. (2010) , the values

f λ are defined as 0 ≤ λ ≤ 1, and they recommend using λ = 0 . 5 .

fter the execution of the three steps described before, any item

hat, at the beginning of the process, did not have any interaction

ith target user u and that has received a positive resource value

 r ′′ (u, i) > 0), is sorted by its final resource value r ′′ (u, i) in ascend-

ng order and included in the prediction list.

The items with the highest resource values in the prediction list

ill compose the recommendation list for target user u . The list of

ecommendations consists of | L | items and is sorted in descend-

ng order by the item resource values; the first position contains

he most relevant item and the last one contains the least relevant

tem.

Some extensions of MDHS have been proposed in the RS liter-

ture: the Semi-Local Diffusion algorithm (SLD) (Zeng et al., 2013)

llows the propagation process to be repeated in G . In practice, this

eans that steps 2 and 3 occur more than once, with recommen-

ations reaching farther user-item neighbourhoods.

However, both MDHS and SLD algorithms always consider the

ame λ value for all RS users, without considering any information

bout their profiles. This means that for each value of λ, recom-

endation lists are generated with the same degree of combina-

ion of MD and HS for all users.

We believe that using the same value of λ for all RS target

sers, without differentiating them according to their specific pro-

les, leads to worse results. We here propose a framework that

unes the λ parameter according to the user profile, and we com-

ine this λ parameter with the MDHS algorithm to generate per-

onalised recommendations. Our proposal is described in the next

ection.

. Proposal

We propose the UPOD algorithm – “User Profile Oriented Dif-

usion”. In the MDHS algorithm, UPOD uses a λ value especially

earned for the target user in order to generate customized recom-

endations for the target user.

4 R.M. Bertani, R. A. C. Bianchi and A.H.R. Costa / Expert Systems With Applications 146 (2020) 113149

Fig. 1. The three propagation steps with the MD algorithm in a user-item bipartite graph. Users are represented by circles, items are represented by bold circles, the target

user is indicated by a shaded circle and the most relevant item to be recommended is marked with a dotted rectangle (modified figure from Zhou et al. (2010)).

Fig. 2. The three propagation steps with the HS algorithm in a user-item bipartite graph. Users are represented by circles, items are represented by bold circles, the target

user is indicated by a shaded circle and the most relevant item to be recommended is marked with a dotted rectangle (modified figure from Zhou et al. (2010)).

Fig. 3. The two phases of the UPOD algorithm.

k

T

i

f

c

s

w

t

c

c

w

m

d

w

g

b

f

d

o

c

v
UPOD operates in two phases: a training phase and a recom-

mendation phase, as shown in Fig. 3 .

The training phase is responsible for preprocessing the data,

defining the features of the users, constructing the bipartite graph

of interactions, clustering users according to features, determining

the profile of each cluster from the λ that characterizes the clus-

ter and, finally, using the pair that defines the user features and

the best λ for each cluster. The training phase trains a classifier

that will provide the best λ from the features of a target user. This

procedure is illustrated in Algorithm 2 .

The training phase is initially responsible for preprocessing the

training dataset (Step 1), by deleting users with invalid or empty

data, removing the timestamp, transforming the zip code into a

country and state format, etc. Also in this step, attribute values are

all transformed into categorical values. For example, the user age

attribute is discretized every 5 years and each interval represents

one category.
From Step 2 to 11, the preprocessed data are grouped into

 clusters by performing the k-modes algorithm (Huang, 1998).

he k-modes algorithm uses a dissimilarity measure for categor-

cal data, represents cluster centroids with modes, and uses a

requency-based method to update modes in the clustering pro-

ess. This algorithm was chosen due to its simplicity, easy under-

tanding and implementation, and its efficiency, which is O(tkn),

here n is the number of data, k is the number of clusters and

 is the number of iterations. Since k and t are small, k-modes is

onsidered a linear algorithm and it is a variant of k-means for

ategorical data.

Let X and Y be attribute vectors that represent categorical data,

here x j ∈ X and y j ∈ Y are the values of each data attribute. The

easure of dissimilarity between X and Y in k-modes is given by:

(X, Y) =

m ∑

j=1

δ(x j , y j) , (9)

here δ(x j , y j) is equal to 0 if x j = y j and is equal to 1 if x j � = y j .

Consider an example in which vectors have 3 attributes: a1 =
ender, a2 = profession, and a3 = age group. An X vector could

e x1 = male, x2 = teacher and x3 = 15–20 and Y could be y1 =
emale, y2 = teacher and y3 = 20–25. In this case, the measure of

issimilarity d(X,Y) = 1 + 0 + 1, indicating that of the 3 attributes,

nly 1 is identical in both vectors.

A mode of a set of n categorical objects X i is a vector Q (a

ategorical attribute vector) that has the least dissimilarity to all

ectors (elements) in a given cluster and therefore minimizes the

R.M. Bertani, R. A. C. Bianchi and A.H.R. Costa / Expert Systems With Applications 146 (2020) 113149 5

Algorithm 2 – UPOD training phase.

Require: dataset , F eat , kmin , kmax , �, Met ric

1: T rainData ← prep(dataset)

2: Ev al ← 0

3: for k = kmin to k = kmax do

4: C lust ers k ← clust ering(T rainData, F eat, k)

5: Ev al k ← e v aluat e (C lust ers k)

6: if Ev al k is better than Ev al then

7: E v al ← E v al k
8: BestClusters ← Clusters k
9: Best k ← k

10: end if

11: end for

12: G ← buildGraph (T rainData)

13: T rainSet ← {}
14: for i = 1 to i = Best k do

15: λbest [i] ← BestLambda (G, BestClusters [i] , �, Metric)

16: for each user in BestClusters[i] do

17: userF eat ← Ext ract F eat (user, F eat)

18: T rainSet ← T rainSet ∪ { < userF eat, λbest [i] > }
19: end for

20: end for

21: cl assi f ier ← T rainCl assi f ier(T rainSet)

22: return classi f ier, G

f

D

s

k

T

A

R

t

(

t

c

{

d

h

u

g

H

w

m

e

p

t

a

t

O

t

p

p

t

H

o

d

p

o

A

R

I

i

P

L

t

t

o

u

c

{

b

i

A

c

t

g

u

t

c

t

(

a

u

q

F

a

p

unction D (X , Q):

 (X, Q) =

n ∑

i =1

d(X i , Q) . (10)

Thus, in Step 4 of Algorithm 2 , the clustering function repre-

ents the k-modes algorithm, used with k varying from kmin to

max and, for each k , an evaluation of the k clusters is performed.

he k-modes algorithm is shown in Algorithm 3 (Huang, 1998).

lgorithm 3 – The k-modes Algorithm.

equire: T rainData , F eat , k

1: Select k initial modes, one for each cluster

2: for each object o from < T rainData, F eat > do

3: Allocate o to the cluster whose mode is the nearest to it ac-

cording to Eq.9

4: end for

5: for each mode from each cluster do

6: Retest the dissimilarity of objects against the current modes

7: if its nearest mode belongs to another cluster then

8: Reallocate the object to that cluster

9: Update the modes of both clusters

10: end if

11: end for

12: C lust ers k ← set of k final clusters

13: return C lust ers k

In Step 5 of Algorithm 2 , for each k cluster returned by

he clustering function that implements the k-modes algorithm

 Algorithm 3), we evaluate the effectiveness of the data parti-

ioning achieved. For this, we use the entropy-based clustering

riterion given by Chen and Liu (2009) . Consider a dataset X =
 x 1 , x 2 , . . . , x n } with n instances and c columns. Each instance x i is

escribed by c columns (x i = { x i
1
, x i

2
, . . . , x i c }) and each column of x i

as a value from domain A i , in which there are a finite number of

nique categorical values. If v ∈ A i , then the probability of x i = v is
iven by p(x i = v) and the column entropy of A i is given by:

(A i | X) = −
∑

v ∈ A i
p(v | X) log 2 p(v | X) , (11)
here p (v | X) is an empirical probability estimated in X . The esti-

ated entropy of the whole dataset is the sum of all the columns

ntropy and is represented by H (X). Besides, supposing dataset X is

artitioned into k clusters, being C k = { C 1 , C 2 , . . . C k } the set of clus-

ers (partition), C k is a cluster, n k is the number of objects in C k
nd H (C k) is the cluster entropy. According to Chen and Liu (2009) ,

he entropy-based clustering criterion is given by

pt(C k) =

1

c

(
H(X) − 1

n

k ∑

k =1

n k H(C k)

)
. (12)

Notice that H (X) is fixed and depends on the dataset, so that

he maximization of Opt (C k) is equivalent to minimizing the ex-

ression

1
n

∑ k
k =1 n k H(C k) , which is named expected entropy from

artition C k . Chen and Liu (2009) argue that the “best k” is the one

hat results in the minimum expected entropy among all k clusters.

ence, at the end of this loop (Steps 3 – 11), we have the best set

f clusters for the best k in BestClusters , given in Best k .

Now that we have the best set of dataset clusters, we need to

etermine for each cluster the best λ, λbest , which represents the

rofile of the users included in that cluster. This is done in Step 15

f Algorithm 2 , with algorithm BestLambda given in Algorithm 4 .

lgorithm 4 – The BestLambda Algorithm.

equire: G , BestCluster [i] , Metr ic, �

1: Ev al λ ← 0

2: for each λ value in � do

3: RecList λ ← MDHS(G, BestCluster[i] , λ)

4: Ev al ← Metric(RecList λ)

5: if Ev al is better than Ev al λ then

6: E v al λ ← E v al

7: λbest [i] ← λ
8: end if

9: end for

10: return λbest [i]

n this algorithm, each recommendation list generated with each λ
s evaluated (Step 4) according to metrics, such as Ranking Score,

recision and Recall (Ma, Ren, Wu, Wang, & Feng, 2017; Zeng, An,

iu, Shang, & Zhou, 2014), to determine the λ that characterizes

he best-generated recommendation list; this λ will be λbest . Note

hat in our system, λbest represents the appropriate combination

f novelty and popularity for recommendations according to the

ser in question and � set contains all the possible lambda values

onsidered by the authors of MDHS in the base article, being: � =
 0 . 0 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 , 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 . 0 } .

Once the λbest [i] for that cluster i in the set BestClusters has

een determined, we collect the features of each user included

n that cluster to compose a training pair for the classifier (see

lgorithm 2). This pair, < userFeat, λbest [i] > , is inserted into the

lassifier training dataset, TrainSet (Steps 17 and 18). Finally, using

he training data TrainSet , a classifier is trained in Step 21 so that,

iven features such as age, gender, and occupation of a given target

ser, the classifier can indicate which the best λ is that represents

hat user profile. The output of the training phase is the trained

lassifier and graph G of interactions between users and items in

he original dataset. For the results presented here, we use an SVM

Support Vector Machine) classifier (Witten et al., 1999). However,

ny other kind of classifier could be used.

The classifier is used to predict the best value of λ for a target

ser in the recommendation phase. The recommendation phase re-

uires as input the interaction graph G , the set of user attributes

eat , the target user, the classifier trained in training phase and

 size for the recommendation list L . The UPOD Recommendation

hase is illustrated in Algorithm 5 .

6 R.M. Bertani, R. A. C. Bianchi and A.H.R. Costa / Expert Systems With Applications 146 (2020) 113149

Algorithm 5 – UPOD Recommendation phase.

Require: G , F eat , user, classi f ier, | L | .
1: userF eatures ← ExtractF eat(user, F eat)

2: λuser ← classi f ier (user F eatures)

3: recommendList ← MDHS(G, user, λuser , | L |)
4: return recommendList

Table 1

Sparsity level of the used dataset.

Dataset Sparsity

MovieLens 0.9371

Last.FM 0.9989

Book-Crossing 0.9996

5

t

i

l

i

5

p

s

a

t

T

t

i

o

m

i

a

e

e

positions the item is, the lower the rank value.
First, the target user’s feature values, userFeatures , are extracted

in Step 1 considering the features defined in the set Feat and the

values indicated by the target user. Values represented in userFea-

tures are inputs to the trained classifier, which predicts the proper

λ value for the user, represented by λuser at Step 2. This variable

λuser reflects the target user profile, defining the appropriate com-

bination of the MD algorithm, which selects popular items, with

the HS algorithm, which selects items based on novelties. Then, in

Step 3 the MDHS algorithm is executed on graph G for the target

user and his/her personalised tuning parameter (λuser) and gener-

ates the recommendation list of size | L |. Note that now the gen-

erated recommendation list combines popular and lesser-known

items according to the particular user profile.

5. Experiments and results

We performed a series of experiments to validate the proposed

algorithm. For this, we performed a comparative analysis with two

recommender systems and three different databases. We evaluate

the results according to some metrics that are widely used in this

type of application. The details of the experimental procedures and

the results are described below.

5.1. Data bases

We considered three well-known datasets in the RS literature.

The datasets used are:

The MovieLens dataset (Harper & Konstan, 2015) contains 910

users, 1672 items and 95,579 interactions. The user features

are age, gender and location.

The Last.FM dataset (Celma, 2010). This work used a ran-

dom subset of the total dataset, containing 2846 users, 4995

items and 14,583 interactions. The user features are age,

gender and country.

The Book-Crossing dataset (Ziegler, McNee, Konstan, & Lausen,

2005) is also a random subset of the total dataset, containing

3421 users, 26,811 items and 35,572 interactions. The user

features are age and location.

According to Lu et al. (2013) and Shambour and Lu (2015) , the

sparseness of a given dataset can be calculated by

sparsity = 1 − K

NM

, (13)

where K, N and M are, respectively, the number of interactions be-

tween users and items, the number of users and the number of

items.

Using Eq. (13) , we have computed the sparsity level of Movie-

Lens, Last.FM and Book-Crossing datasets shown in Table 1 . The

Book-Crossing dataset is the sparsest.
.2. Algorithms for comparison

We have comparatively evaluated the proposed algorithm with

wo other algorithms: (i) the MDHS algorithm with λ = 0 . 5 , follow-

ng the author’s suggestion, and (ii) a nearest neighbourhood col-

aborative filtering (CF) algorithm, which was previously detailed

n Algorithm 1 in Section 1 .

.3. Evaluation method and metrics

We used the 10-fold cross-validation technique to validate our

roposal. Cross-validation is a model validation technique for as-

essing how the results of a statistical analysis will generalize to

n independent dataset. This approach involves randomly dividing

he set of data into k groups, or folds, of approximately equal size.

he first fold is treated as a testing set, and the method is fit on

he remaining k − 1 folds (called the training set). The procedure

s repeated for each group, and the validation results are averaged

ver the rounds to give an estimate of the model predictive perfor-

ance. We only consider users that are present in both the train-

ng set and the testing set. These users are called “valid users” and

re represented by U valid .

We used three metrics to validate the recommendation list gen-

rated by the systems: Recall, Precision, and Ranking Score (Ma

t al., 2017; Zeng et al., 2014).

Recall : It measures the proportion of items in the testing set

that correspond to items in the recommendation list gener-

ated for a target user u (Yang et al., 2016):

Re u (L) =

d u (L)

I u
, (14)

where d u (L) is the number of items related to target user

u ∈ U valid in the testing set and also present in recommenda-

tion list L; I u is the total number of items related to u ∈ U valid

in the testing set.

The higher its value, the more items in the testing set corre-

spond to recommended items.

Precision : It measures the proportion of items in the user rec-

ommendation list that corresponds to items related to the

target user in the testing set, and is given by (Yang et al.,

2016):

P e u (L) =

d u (L)

| L | , (15)

where d u (L) is the number of items related to the target user

u ∈ U valid in the testing set that are present in the recom-

mendation list and | L | is the size of the recommendation list.

The higher its value, the more items in the recommendation

list correspond to items related to the user in the testing set.

Ranking Score : It takes into account the position in which

items related to the target user in the testing set appear in

the generated recommendation list. This position is known

as the “rank” of the item, which is obtained based on the

position of the item in the recommendation list divided by

the number of items initially unknown to the user (Chen,

Zeng, & Chen, 2015; Yu, Zeng, Gillard, & Medo, 2015):

RS u =

∑

i ∈ I u

rank (i)

| I u | , (16)

where I u is the set of items related to u ∈ U valid in the testing

set and rank (i) represents the rank of item i in the generated

recommendation list. This means that the closer to the first

R.M. Bertani, R. A. C. Bianchi and A.H.R. Costa / Expert Systems With Applications 146 (2020) 113149 7

Table 2

Experimental results for the three datasets.

Algorithm RS Re(L) Pe(L)

avg σ avg σ avg σ

CF 0.497 0.002 0.014 0.002 0.003 4 . 6 x 10 −4

MDHS (λ = 0.5) 0.080 0.001 0.299 0.008 0.086 0.001

UPOD 0.074 0.001 0.308 0.007 0.091 0.002

(a) Results from the Movielens dataset. With k a v g = 197 and k σ = 4 . 25 for the UPOD algorithm. The average processing time for CF, MDHS and UPOD were 5 min, 30

s and 5 s, respectively.

Algorithm RS Re(L) Pe(L)

avg σ avg σ avg σ

CF 0.444 0.004 0.018 0.004 9 . 6 x 10 −4 2 x 10 −4

MDHS (λ = 0 . 5) 0.252 0.007 0.119 0.006 0.006 2 . 9 x 10 −4

UPOD 0.251 0.006 0.174 0.014 0.009 7.4x10 −4

(b) Results from the Last.FM dataset. With k a v g = 196 and k σ = 2 . 94 for the UPOD algorithm. The average processing time for CF, MDHS and UPOD were 2 min, 18 s

and 9 s, respectively

Algorithm RS Re(L) Pe(L)

avg σ avg σ avg σ

CF 0.406 0.007 3 . 6 x 10 −4 2 . 4 x 10 −4 3 . 5 x 10 −5 1 x 10 −5

MDHS (λ = 0 . 5) 0.395 0.007 0.002 4 . 7 x 10 −4 2 x 10 −4 4 . 9 x 10 −5

UPOD 0.394 0.008 0.003 0.001 3.76x10 −4 7.3x10 −5

(c) Results from the Book-Crossing dataset. With k a v g = 192 and k σ = 8 . 5 for the UPOD algorithm. The average processing time for CF, MDHS and UPOD were 20

min, 30 s and 5 s, respectively.

5

g

i

e

d

d

M

g

i

o

u

g

7

f

m

t

d

O

u

t

n

5

t

s

e

a

a

r

r

i

s

f

i

T

T

t

d

n

d

r

p

a

t

r

f

d

o

6

t

m

s

u

p

p

i

i

s

s

i

a

D

b
.4. Implementation details

An important aspect to consider is how the proposed new al-

orithm, UPOD, can be compared with the other two algorithms

n terms of time efficiency. To explain how we can measure this

fficiency, it is first necessary to understand some implementation

etails involved in the structure, as well as the computational con-

itions under which the algorithms were executed.

One of the most important differences between the UPOD and

DHS implementations is that the first one performs the propa-

ation steps using a parallel computing strategy. This means that,

n our implementation, the propagation steps occur for more than

ne user at a time, depending on the number of processor cores,

nlike the original MDHS implementation, which performs propa-

ations for each user, one after the other.

All the algorithms were executed on a Debian GNU Linux with

.5 GB RAM and 2 vCPUs available on the Google Cloud Plat-

orm (Google Compute Engine) and all the implementations were

ade with the Java TM programming language. Under these condi-

ions, the UPOD training phase time was 3 min for the Movielens

atabase, 41 s for Last.FM and 2 min and 55 s for Book-Crossing.

f course, this may vary depending on the computational structure

sed and the size of the dataset, the number of user attributes, and

he number of graph edges.

Note that the training phase takes place offline and only when

eeded.

.5. Results and discussion

For all the experiments, we considered | L | = 30 as the size of

he recommendation list. In the CF algorithm, the neighbourhood

ize was | V z| = 30 ; and for the UPOD algorithm, k min was defined

xperimentally as 100, while k max was defined in order to maintain

 maximum of 15–20 users in each cluster, so that k max = 200 for

ll datasets.

Table 2 shows the results from each dataset. Bold are those

esults in which UPOD has outperformed the CF and MDHS algo-

ithms at the same time, according to the t -test (95% confidence

nterval), meaning that the difference between the results is con-

idered to be statistically significant. k avg and k σ were calculated
or each dataset, after the application of the entropy-based cluster-

ng criterion to each of the 10 executions.

Table 2 (a) presents the results for the Movielens dataset,

able 2 (b) presents the results for the Last.FM dataset, and

able 2 (c) presents the results for the Book-Crossing dataset.

Table 2 allows observing that UPOD significantly outperformed

he other algorithms concerning the metrics used, although the

ifference between the results was not considered statistically sig-

ificant in all cases. For example, according to the t -test, UPOD

oes not outperform CF and MDHS in the RankScore (RS) met-

ic in the Last.FM and Book-Crossing datasets. However, our pro-

osal systematically outperformed the others according to Recall

nd Precision metrics.

The inclusion of the user profile is a very important contribu-

ion of our proposal as it allows for more refined and personalised

ecommendation content.

In addition, the user profile can also be obtained in ways dif-

erent from that used in the UPOD system; For example, it can be

erived from social network data or even from the user behaviour

bserved in e-commerce.

. Conclusions and future work

This article contributed with the UPOD algorithm; this allowed

he automatic tuning of the λ parameter, which determines the

ixing degree in the mass diffusion process. UPOD makes it pos-

ible to generate personalised recommendations, combining pop-

larity and novelty according to each user’s particular profile. Ex-

eriments using three well-known databases have shown that su-

ervised learning of the λ parameter according to user profile can

mprove the quality of recommendations in sparse data sets.

Future research should include the rating values assigned to

tems in the calculation of resource values during the mass diffu-

ion process in the bipartite graph. Thus, better-rated items in the

ystem would be recommended more strongly than poorly rated

tems. Another possible improvement would be to allow a greater

mount of resource propagation in the graph, as in the Semi-Local

iffusion , Zeng et al. (2013) algorithm. Finally, several aspects must

e integrated into the design of a recommender system so that it

8 R.M. Bertani, R. A. C. Bianchi and A.H.R. Costa / Expert Systems With Applications 146 (2020) 113149

L

L

L

M

M

P

R

S

W

W

Y

Y

Z

Z

Z

Z

can generate even better recommendations that are more in line

with each user’s profile.

Declaration of Competing Interest

None.

Credit authorship contribution statement

Ricardo Mitollo Bertani: Conceptualization, Formal analysis,

Methodology, Validation, Writing - original draft. Reinaldo A. C.

Bianchi: Writing - original draft, Formal analysis, Conceptualiza-

tion. Anna Helena Reali Costa: Writing - original draft, Formal

analysis, Conceptualization, Funding acquisition.

Acknowledgement

The authors acknowledge the support of CNPq (N.

425860/2016-7 and N. 307027/2017-1). The authors also would

like to thank all the support provided by An Zeng and Wei

Zeng, authors of the paper Zeng et al. (2013) , with the reproduc-

tion of the MDHS algorithm, which was originally presented in

Zhou et al. (2010) . This study was financed in part by the Coor-

denação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES),

Brazil, Finance Code 001.

References

Beel, J., Gipp, B., Langer, S., & Breitinger, C. (2016). Research-paper recommender
systems: a literature survey. International Journal on Digital Libraries, 17 (4), 305–

338. doi: 10.10 07/s0 0799- 015- 0156- 0 .
Betru, B. T., & Onana, C. A. (2017). Deep learning methods on recommender sys-

tem: A survey of state-of-the-art. International Journal of Computer Applications,

162 (10), 975–8887. doi: 10.5120/ijca2017913361 .
Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems

survey. Knowledge-Based Systems, 46 , 109–132. doi: 10.1016/j.knosys.2013.03.012 .
Celma, O. (2010). Music recommendation and discovery . ISBN 978-3-642-13287-2:

Springer .
Chen, B., Zeng, A., & Chen, L. (2015). The effect of heterogeneous dynamics of online

users on information filtering. Physics Letters A , 379 (43–4 4), 2839–284 4. doi: 10.
1016/j.physleta.2015.09.019 .

Chen, K., & Liu, L. (2009). “Best K”: Critical clustering structures in categor-

ical datasets. Knowledge and Information Systems, 20 (1), 1–33. doi: 10.1007/
s10115- 008- 0159- x .

Deng, X., Zhong, Y., Lü, L., Xiong, N., & Yeung, C. (2017). A general and effective
diffusion-based recommendation scheme on coupled social networks. Informa-

tion Sciences, 417 (168), 420–434. doi: 10.1016/j.ins.2017.07.021 .
Fu, M., Qu, H., Moges, D., & Lu, L. (2018). Attention based collaborative filtering.

Neurocomputing, 311 , 88–98. doi: 10.1016/j.neucom.2018.05.049 .

Harper, F. M., & Konstan, J. A. (2015). The movielens datasets: History and context.
ACM Transactions on Interactive Intelligent Systems , 5 (4), 19:1–19:19. doi: 10.

1145/2827872 .
Huang, Z. (1998). Extensions to the k-Means algorithm for clustering large data sets

with categorical values. Data Mining and Knowledge Discovery , 2 (3), 283–304 .
Javari, A., & Jalili, M. (2014). A probabilistic model to resolve diversity-accuracy chal-

lenge of recommendation systems. Knowledge and Information Systems, 44 (3),

609–627. doi: 10.1007/s10115- 014- 0779- 2 .
Kaminskas, M., & Bridge, D. (2016). Diversity, serendipity, novelty, and coverage.

ACM Transactions on Interactive Intelligent Systems , 7 (1), 1–42. doi: 10.1145/
2926720 .

Katarya, R., & Verma, O. P. (2016). Recent developments in affective recommender
systems. Physica A: Statistical Mechanics and its Applications, 461 , 182–190.

doi: 10.1016/j.physa.2016.05.046 .

Kotkov, D., Wang, S., & Veijalainen, J. (2016). A survey of serendipity in recom-
mender systems. Knowledge-Based Systems, 111 , 180–192. doi: 10.1016/j.knosys.

2016.08.014 .
acerda, A. (2017). Multi-Objective ranked bandits for recommender systems. Neu-
rocomputing , 246 , 12–24. doi: 10.1016/j.neucom.2016.12.076 .

iu, H., Hu, Z., Mian, A., Tian, H., & Zhu, X. (2014). A new user similarity model
to improve the accuracy of collaborative filtering. Knowledge-Based Systems, 56 ,

156–166. doi: 10.1016/j.knosys.2013.11.006 .
Lu, J., Shambour, Q., Xu, Y., Lin, Q., & Zhang, G. (2013). A web-based personal-

ized business partner recommendation system using fuzzy semantic techniques.
Computational Intelligence, 29 (1), 37–69. doi: 10.1111/j.1467-8640.2012.00427.x .

u, J., Wu, D., Mao, M., Wang, W., & Zhang, G. (2015). Recommender system applica-

tion developments: A survey. Decision Support Systems, 74 , 12–32. doi: 10.1016/j.
dss.2015.03.008 .

a, T. , Zhou, J. , Tang, M. , Tian, Y. , Al-Dhelaan, A. , Al-Rodhaan, M. , & Lee, S. (2015).
Social network and tag sources based augmenting collaborative recommender

system. IEICE Transactions on Information and Systems , 98 (4), 902–910 .
a, W., Ren, C., Wu, Y., Wang, S., & Feng, X. (2017). Personalized recommendation

via unbalance full-connectivity inference. Physica A: Statistical Mechanics and its

Applications, 483 , 273–279. doi: 10.1016/j.physa.2017.04.041 .
Patra, B. K., Launonen, R., Ollikainen, V., & Nandi, S. (2015). A new similarity mea-

sure using Bhattacharyya coefficient for collaborative filtering in sparse data.
Knowledge-Based Systems, 82 , 163–177. doi: 10.1016/j.knosys.2015.03.001 .

earson, K. (1920). Notes on the history of correlation. Biometrika , 13 (1), 25–45.
doi: 10.1093/biomet/13.1.25 .

icci, F. , Rokach, L. , Shapira, B. , & Kantor, P. B. (2010). Recommender systems hand-

book (1st). New York, NY, USA: Springer-Verlag New York, Inc. .
Shambour, Q., & Lu, J. (2015). An effective recommender system by unifying user

and item trust information for B2B applications. Journal of Computer and System
Sciences, 81 (7), 1110–1126. doi: 10.1016/j.jcss.2014.12.029 .

ánchez-Moreno, D., Gil González, A. B., Muñoz Vicente, M. D., López Batista, V. F., &
Moreno García, M. N. (2016). A collaborative filtering method for music recom-

mendation using playing coefficients for artists and users. Expert Systems with

Applications, 66 , 1339–1351. doi: 10.1016/j.eswa.2016.09.019 .
ang, X., Liu, Y., Zhang, G., Zhang, Y., Chen, H., & Lu, J. (2017). Mixed similarity dif-

fusion for recommendation on bipartite networks. IEEE Access , 5 , 21029–21038.
doi: 10.1109/ACCESS.2017.2753818 .

itten, I. H. , Frank, E. , Trigg, L. , Hall, M. , Holmes, G. , & Cunningham, S. J. (1999).
Weka: Practical machine learning tools and techniques with Java implementa-

tions. In N. Kasabov, & K. Ko (Eds.), Proceedings of the ICONIP/ANZIIS/ANNES’99

workshop on emerging knowledge engineering and connectionist-based information
systems (pp. 192–196) . Dunedin, New Zealand

ang, Z., Wu, B., Zheng, K., Wang, X., & Lei, L. (2016). A survey of collaborative
filtering-based recommender systems for mobile internet applications. IEEE Ac-

cess , 4 , 3273–3287. doi: 10.1109/ACCESS.2016.2573314 .
u, F., Zeng, A., Gillard, S., & Medo, M. (2015). Network-based recommendation algo-

rithms: A review. Physica A: Statistical Mechanics and its Applications, 452 , 192–

208. arXiv:1511.06252 . doi: 10.1016/j.physa.2016.02.021 .
eng, W., An, Z., Liu, H., Shang, M.-s., & Zhou, T. (2014). Uncovering the information

core in recommender systems. Scientific Reports, 4 , 6140. doi: 10.1038/srep06140 .
Zeng, W., Zeng, A., Shang, M. S., & Zhang, Y. C. (2013). Information filtering in

sparse online systems: Recommendation via semi-local diffusion. PLoS ONE,
8 (11). doi: 10.1371/journal.pone.0079354 .

Zhang, F.-G., & Zeng, A. (2015). Information filtering via heterogeneous diffusion in
online bipartite networks. PLoS ONE , 10 (6), e0129459. doi: 10.1371/journal.pone.

0129459 .

hang, S., Yao, L., & Sun, A. (2017). Deep learning based recommender system: A
Survey and new perspectives. ACM Journal on Computing and Cultural Heritage

(JOCCH) , 1 (1), 1–35. arXiv:1707.07435 .
hang, Y.-C., Blattner, M., & Yu, Y.-K. (2007). Publisher’S note: heat conduction pro-

cess on community networks as a recommendation model. Physical Review Let-
ters , 99 (16), 169902. arXiv:0803.2179 . doi: 10.1103/PhysRevLett.99.169902 .

Zhou, T., Kuscsik, Z., Liu, J.-G., Medo, M., Wakeling, J. R., & Zhang, Y.-C. (2010). Solv-

ing the apparent diversity-accuracy dilemma of recommender systems.. Proceed-
ings of the National Academy of Sciences of the United States of America, 107 (10),

4511–4515. arXiv:0808.2670 . doi: 10.1073/pnas.10 0 0488107 .
Zhou, T., Ren, J., Medo, M., & Zhang, Y. C. (2007). Bipartite network projection and

personal recommendation. Physical Review E - Statistical, Nonlinear, and Soft Mat-
ter Physics, 76 (4), 1–7. doi: 10.1103/PhysRevE.76.046115 .

iegler, C.-N. C., McNee, S. M. S., Konstan, J. a. J., & Lausen, G. (2005). Improving rec-

ommendation lists through topic diversification. In Proceedings of the 14th inter-
national conference on World Wide Web WWW 05 (p. 22). doi: 10.1145/1060745.

1060754 .

https://doi.org/10.13039/501100003593
https://doi.org/10.1007/s00799-015-0156-0
https://doi.org/10.5120/ijca2017913361
https://doi.org/10.1016/j.knosys.2013.03.012
http://refhub.elsevier.com/S0957-4174(19)30866-8/othref0001
http://refhub.elsevier.com/S0957-4174(19)30866-8/othref0001
https://doi.org/10.1016/j.physleta.2015.09.019
https://doi.org/10.1007/s10115-008-0159-x
https://doi.org/10.1016/j.ins.2017.07.021
https://doi.org/10.1016/j.neucom.2018.05.049
https://doi.org/10.1145/2827872
http://refhub.elsevier.com/S0957-4174(19)30866-8/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30866-8/sbref0010
https://doi.org/10.1007/s10115-014-0779-2
https://doi.org/10.1145/2926720
https://doi.org/10.1016/j.physa.2016.05.046
https://doi.org/10.1016/j.knosys.2016.08.014
https://doi.org/10.1016/j.neucom.2016.12.076
https://doi.org/10.1016/j.knosys.2013.11.006
https://doi.org/10.1111/j.1467-8640.2012.00427.x
https://doi.org/10.1016/j.dss.2015.03.008
http://refhub.elsevier.com/S0957-4174(19)30866-8/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30866-8/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30866-8/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30866-8/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30866-8/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30866-8/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30866-8/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30866-8/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30866-8/sbref0019
https://doi.org/10.1016/j.physa.2017.04.041
https://doi.org/10.1016/j.knosys.2015.03.001
https://doi.org/10.1093/biomet/13.1.25
http://refhub.elsevier.com/S0957-4174(19)30866-8/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30866-8/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30866-8/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30866-8/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30866-8/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30866-8/sbref0023
https://doi.org/10.1016/j.jcss.2014.12.029
https://doi.org/10.1016/j.eswa.2016.09.019
https://doi.org/10.1109/ACCESS.2017.2753818
http://refhub.elsevier.com/S0957-4174(19)30866-8/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30866-8/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30866-8/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30866-8/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30866-8/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30866-8/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30866-8/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30866-8/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30866-8/sbref0028
https://doi.org/10.1109/ACCESS.2016.2573314
http://arxiv.org/abs/1511.06252
https://doi.org/10.1016/j.physa.2016.02.021
https://doi.org/10.1038/srep06140
https://doi.org/10.1371/journal.pone.0079354
https://doi.org/10.1371/journal.pone.0129459
http://arxiv.org/abs/1707.07435
http://arxiv.org/abs/0803.2179
https://doi.org/10.1103/PhysRevLett.99.169902
http://arxiv.org/abs/0808.2670
https://doi.org/10.1073/pnas.1000488107
https://doi.org/10.1103/PhysRevE.76.046115
https://doi.org/10.1145/1060745.1060754

	Combining novelty and popularity on personalised recommendations via user profile learning
	1 Introduction
	2 Related work
	3 Diffusion-based recommendation algorithms
	4 Proposal
	5 Experiments and results
	5.1 Data bases
	5.2 Algorithms for comparison
	5.3 Evaluation method and metrics
	5.4 Implementation details
	5.5 Results and discussion

	6 Conclusions and future work
	Declaration of Competing Interest
	Credit authorship contribution statement
	Acknowledgement
	References

