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A B S T R A C T

The traditional optimization processes of analog complementary metal-oxide-semiconductor (CMOS) integrated
circuits (ICs) are very complex, slow, and based on the designers’ experience. To obtain robust potential solutions,
it is necessary to perform robustness analyses (RAs) through SPICE simulations. However, this approach repre-
sents a huge bottleneck in the optimization processes due to the significant increase of time of the SPICE simu-
lations concerning the RAs. Therefore, this work proposes an innovative customized genetic algorithm (GA) to
boost the optimization process of analog CMOS ICs. The main results obtained showed that all designs of analog
CMOS ICs reached a yield of 100% and a remarkable reduction of the optimization time (from 23% to 79%) in
comparison with the standard optimization process with the GA, without reducing the random samples number
considered in the RAs, and consequently preserving their robustness accuracy.
1. Introduction

The continuous downscaling of the complementary metal-oxide-
semiconductor (CMOS) integrated circuits (ICs) technologies increases
the variability of dimensional and technological parameters of the metal-
oxide-semiconductor field effect transistors (MOSFETs) due to the
random placement of dopant in the channel region, roughness of the
edges of the gate region (induced by the gate etching and lithography
processes), oxide thickness fluctuations which affect the mobility of the
mobile charge carriers in the channel (μ0), threshold voltage (Vth), etc.
[1]. Therefore, after the manufacturing process, the electrical perfor-
mance of the analog CMOS ICs can be severely impaired [1].

As a consequence of the enormous number of design specifications
(figures of merit) that must be achieved at the same time, the traditional
optimization processes of the analog CMOS ICs are very complex,
demanding a high design cycle time, and therefore they are mainly based
on the knowledge and experience of the designers [2–4]. This situation is
further aggravated by the effects of manufacturing processes’ variations
regarding the nanoscaled technology nodes [2,3].

For many years, most of the design tools for analog CMOS ICs [5,6]
have only taken into account some extreme global variations of dimen-
sional and technological parameters of MOSFETs in relation to the
manufacturing processes and environmental conditions through the
corner analysis (CA) [7,8]. However, in the most sophisticated
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technology nodes (below 130 nm), the local variations in the dimen-
sional and technological parameters of the MOSFETs, regarding the
minimum dimensions allowed by the CMOS ICs manufacturing pro-
cesses, have caused a higher impact on the electrical performance of
analog CMOS ICs, mainly in relation to their robustness [7]. To overcome
the limitations of the accuracy of the figures of merit (FoMs) obtained
through SPICE simulations regarding the CAs, the Monte Carlo analysis
(MCA) is currently the most used for designing analog CMOS ICs [8].
Nevertheless, the use of MCA for designing the analog CMOS ICs results
in a significant increase in the design cycle time [8].

The analog CMOS IC is classified as a system of multiple input vari-
ables and many output variables. The manual traditional design methods
by using SPICE simulations are complex, need several interactions be-
tween the designers and simulations and consequently they are very time
consuming [4]. To overcome these issues, the evolutionary algorithms
(EAs) of the artificial intelligence have been used to optimize these types
of circuits with great success [4,5,9–12]. The EAs are classified into two
main categories: I) A priori: it is characterized by the definition of desired
specifications before the execution of the optimization process. This
approach transforms a multi-objective problem into a single-objective
problem by using a fitness function which is responsible for assigning a
value to each potential solution (input variables such as the MOSFETs
dimensions, bias conditions, etc.) taking into account its multiple ob-
jectives found by the evolution process. The potential solution that
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Fig. 1. Flowchart of the customized GA optimization process.
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presents the highest value of the fitness function corresponds to the one
which better meets all the desired specifications (FoMs) at the same time.
An example of this approach is the standard genetic algorithm (GA) [13];
II) A posteriori: it can provide an enormous set of potential solutions that
can meet the desired specifications. However, the designers are in charge
of choosing the solution that best suit their needs [13]. This methodology
is usually based on the Pareto techniques, such as the nondominated
sorting genetic algorithm II (NSGA-II) and strength Pareto evolutionary
algorithm (SPEA) [13]. Some recent works related to analog CMOS ICs
2

optimizations have used a posteriori approaches, such as the NSGA-II
[9–11]. However, they are often unable to explore potential solutions
in specific regions of the Pareto front by using modest computational
resources [12]. Furthermore, the designer has great difficulties to choose
a potential solution which presents the best tradeoff among the different
desired design specifications [13]. Therefore, the a priori approach
through the use of normalized exponential fitness functions becomes an
alternative approach to overcome the drawbacks mentioned in the a
posteriori technique, focusing on analog CMOS ICs designs [12,14]. In this



Fig. 2. Monitoring of the design parameters in the MTGSPICE, taking into account the CA and/or MCA in the loop of the optimization process.
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Fig. 3. Topologies of the CMOS OTAs used in this work: (a) SESS and (b) CBMC.

Table 1
Desired Design Specifications of the μP_SESS and HG_CBMC OTAs.

Design Specifications μP_SESS HG_CBMC

Open loop voltage gain (AV0) �44 dB �70 dB
Unit voltage gain frequency (fT) �150 kHz �44 kHz
Phase margin (PM) �87� �67�

DC output voltage (VOUT) �125mV �50mV
Power consumption (PTOT) �5 μW �484 nW
Gate area of the MOSFETs (AG) �8636 μm2 �8636 μm2

Table 2
Optimization Parameters of the μP_SESS and HG_CBMC OTAs.

Design Parameter Range

μP_SESS HG_CBMC

W [1, 500, 0.35] μm [1, 10, 0.1] μm
L [1, 20, 0.35] μm [0.7, 7, 0.05] μm
IPOL [0.01, 1, 0.01] μA [10, 500, 1] nA
Cf – [1, 100, 0.05] pF

Note: “Range” indicated in this Table is related to the minimum and maximum
values, and the value of the step that was adopted for these parameters to
perform the optimization process.
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work, we have used the Gaussian-based exponential fitness functions
proposed in Ref. [14] to improve the robustness and effectiveness of the
optimization processes of analog CMOS ICs designs based on a priori
techniques.

Usually, the professional (commercial) Electronic Design Automation
(EDA) tools for the optimization of analog CMOS ICs do not consider the
SPICE simulations with the robustness analysis (RA: CA and MCA) in the
loop of the optimization process due to the enormous number of simu-
lations to be performed [15,16], resulting in an extensive increase in the
time of the optimization process [9,17]. We could observe that these
professional computational tools use several different techniques to
reduce the impact of RA in the optimization processes of analog CMOS
ICs. Most of them are based on the reduction of the number of samples
3

used to perform the MCA, such as Latin hypercube sampling (LHS) and
quasi-Monte Carlo (QMC) [8,18,19], approximations (k-means [9]) or by
using simplified models (kriging [3]) to estimate the results of MCA.
Although these approaches help to reduce the optimization time, when
they are compared with the results obtained by the conventional MCA,
we can observe that they reduce the accuracy of the robustness study of
the analog CMOS ICs [20].

In this context, the main goal of this work is to reduce the impact of
the SPICE simulations considering the RA (SSRA) in the loop of the
optimization process of the analog CMOS ICs, without reducing the
number of samples of the RA [8] and without using metamodel tech-
niques to predict the behavior of the RA [3] in order to guarantee a better
accuracy in the robustness study of analog CMOS ICs designs to be
implemented. This novel methodology is performed by using an in-house
optimization tool named MTGSPICE [14], which will implement a
customized GA with the following features: I- the RA is included in the
loop of the optimization processes; II- the values of the fitness functions
of the FoMs obtained through SPICE simulations are defined by taking
into account their robustness, which are obtained through the RA. It is
important to highlight that the nominal value of each FoM is obtained
through SPICE simulations regarding direct current (DC) and alternating
current (AC) analyses, and its robustness is calculated by the average
value of the relative errors considering the minimum and maximum
values of each FoM in relation to the desired specifications; III- the elitism



Table 3
Optimization cycle time for the μP_SESS and HG_CBMC OTAs, regarding the in-
loop robustness analysis.

NCA and/or NMCA μP_SESS HG_CBMC

OCT (min.) SD (%) OCT (min.) SD (%)

SFFE þ MCA
2 27.5 72.6 83.2 78.8
5 71.3 64.9 184.4 63.2
10 143.7 98.2 345.1 99.0
Average values 80.8 78.5 204.3 80.4
SFFE þ MCA þ Re
2 15.0 79.5 34.3 59.7
5 35.3 48.8 81.7 58.4
10 69.7 76.6 151.4 84.1
Average values 40.0 68.3 89.1 67.4
CFFE þ MCA
2 37.1 77.8 72.3 62.3
5 45.9 72.1 114.0 58.7
10 69.3 55.6 160.0 64.8
Average values 50.8 68.5 115.4 61.9
CFFE þ MCA þ Re
2 18.6 81.8 34.5 55.0
5 21.9 56.8 62.1 36.2
10 40.2 43.6 101.8 57.7
Average values 26.9 60.8 66.1 49.6
CFFE þ CA
2 15.2 95.1 85.2 82.4
5 7.5 36.0 45.1 140.0
10 12.3 70.6 68.2 64.3
Average values 11.7 67.3 66.2 95.6
CFFE þ CA þ Re
2 9.9 96.7 56.4 76.4
5 5.3 35.5 32.2 137.4
10 8.4 75.7 44.1 66.5
Average values 7.9 69.3 44.2 93.4
CFFE þ CA þ MCA
2 16.4 85.3 77.0 84.9
5 13.1 23.8 58.5 73.1
10 20.7 27.2 58.6 28.6
Average values 16.8 45.4 64.7 62.2
CFFE þ CA þ MCA þ Re
2 11.4 84.4 59.4 72.0
5 10.1 23.1 50.1 67.7
10 17.5 25.7 44.1 27.8
Average values 13.0 44.4 51.2 55.8

Table 4
The OCTs regarding the CFFE þ CA þ MCA þ Re approach (NCA¼NMCA¼10), by
using ref. [14], and the number of robust solutions obtained by each approach for
the μP_SESS and HG_CBMC designs, respectively.

Method μP_SESS HG_CBMC

OCT (min.) N� Sol. OCT (min.) N� Sol.

CFFE þ CA þ MCA þ Re 17.5 10.0 44.1 10.0
Ref. [14] 795.6 7.0 771.3 2.0
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process is responsible for considering the most robust potential solutions
found to perform the crossover and mutation processes; IV- imple-
mentation of a reuse strategy of the FoMs obtained from the previous
generation which will be used in the next generation of the evolution
process, aiming to reduce the optimization cycle time; V- limitation of the
maximum number of SSRA as a function of the number of robust solutions
already obtained.

Two different topologies of operational transconductance amplifiers
(OTAs) were considered in this work to qualify the effectiveness of the
RA driven optimization process proposed in this study.

This paper is organized as follows. Section 2 gives an overview of the
existent solutions for the optimization process of analog CMOS ICs with
in-loop robustness analysis. Section 3 presents the robustness driven
optimization process implemented in the MTGSPICE (“in house” tool).
Next, in Section 4, the OTAs’ topologies are described. The OTAs’
4

specifications, configurations’ parameters of MTGSPICE, CA, and MCA
are provided in Section 5. Section 6 discusses the main results found in
this work. Finally, Section 7 presents the main conclusions of this paper.

2. Related works

Reference [8] proposes to replace the traditional MCA and LHS with
QMC simulations to speed up the statistical analysis regarding analog
CMOS ICs. The authors compared the QMC method with the MCA and
LHS methods. They observed a superior performance of QMC, reducing
the computational efforts from 2 to 8 times in relation to the MCA and
LHS methods, with an accuracy loss of approximately 1%. The drawback
of the QMC approach is the electrical performance degradation of the
CMOS ICs for higher dimensionality sampling spaces [9].

Regarding the work described in Ref. [9], the authors have proposed
an optimization tool for analog CMOS ICs that uses the traditional MCA
without approximations to estimate the yield of the potential solutions
considered, during the optimization process. They have proposed the use
of the k-means algorithm using a variable number of clusters to select
only a few potential solutions to perform the SPICE simulations consid-
ering the AC analysis with the MCA (SSMCA). Although they have re-
ported a reduction of up to 91% in the total number of MCAs performed
by the optimization process, a compromise was observed between the
accuracy of the proposed approach and the number of clusters used
during the optimization process. Similarly, the authors in Ref. [17]
proposed a methodology (FUZYE) that reduces the total number of MCA
that are required in the optimization process of analog CMOS ICs. In each
generation of the GA, the population is clustered using the fuzzy c-means
(FCM) technique. After that, the MCA was performed for the most
representative individual (RI) from each cluster and the yield for the rest
of the population was estimated based on the degree of pertinence of
FCM and the yield values of the RIs. The results obtained by the FCM
approach were compared to a conventional approach, where all in-
dividuals of the population were subject to SSMCA. The FCM method
achieved a reduction of 89% in the total number of MCA, when compared
to the MCA over the full population. Moreover, the proposed FUZYE was
compared with the previously proposed k-means clustering algorithm.
Although the FCM showed an improvement of up to 13% in yield esti-
mation accuracy in relation to the k-means method, there is a tradeoff
between the total number of MCA and the yield estimation accuracy.

In Ref. [21], the authors optimized a two-stage Miller OTA by using a
130 nm Bulk CMOS ICs technology node, by means of an artificial in-
telligence heuristic approach. They included the desired yield value in
the fitness function as one additional design objective. Besides, they
proposed a hybrid sampling method to perform the robustness analysis,
LHS with a reduced sample size and the conventional random sampling.
The hybrid approach was able to reduce the optimization time by 15% in
relation to the approach using only the standard MCA.

The work described in Ref. [19] proposed the use of a QMC analysis
with adaptive sample size instead of using the traditional MCA in the
optimization process of analog CMOS ICs. The objective of this proposal
was to reduce the SPICE simulation time required to estimate the yield of
the potential solutions of the analog CMOS ICs design. In this case, it was
verified that there is a tradeoff between the simulation time and the
accuracy of the yield estimation of the potential solutions, which is
defined by two parameters: the size of the sample and its increment step.
Furthermore, the SPICE simulations taking into account the QMC were
not carried out for the infeasible potential solutions in order to boost the
efficiency of the optimizer’s process. As a reduced number of samples
was used during the experiments (between 98 and 128), a more accurate
QMC analysis was subsequently performed for the potential solutions
obtained with a higher number of samples (from 1081 to 21034) in order
to qualify the results obtained previously, resulting in the maximum error
rate in the yield of 3%.

There are several other works that have built approximate models
regarding the SPICE simulations taking into account the MCA in the loop
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of the optimization process to subsequently be used to predict the vari-
ability effects in analog CMOS ICs (metamodeling techniques). The au-
thors of [3] proposed the Kriging technique to implement metamodels for
the design of analog CMOS ICs. They replaced the SPICE simulations
regarding the MCA with the Kriging metamodel to predict the electrical
performance of analog CMOS ICs, considering manufacturing process
variations, in order to reduce the optimization cycle time. The proposed
technique obtained average errors of 0.7% and 0.33%, respectively, for
the two figures of merit considered. Besides, they have improved the
optimization time about 10 times in relation to SPICE simulations con-
cerning the MCA. The disadvantages of the model-based approaches are
the huge setup time and the difficulty of reusing these metamodels for
different analog CMOS ICs and technology nodes [9].

The authors in Ref. [22] presented MOJITO-R, a tool which performs
structural synthesis and optimization of analog CMOS ICs, taking into
account robustness analysis regarding the manufacturing process varia-
tions. This tool applied a model of process variations instead of the
traditional MCA. The authors compared their approach with the MCA
taking into account a reduced number of samples (30). The robustness
analysis used by the proposed tool achieved an optimization cycle time
ten times faster than the standard MCA. However, approximated models
were applied regarding the manufacturing process variations.

To the best of our knowledge, the most similar works to ours are those
described in Refs. [9,21], respectively, which use the conventional MCA
in the loop of the optimization process. The approaches used by these
references consider the use of different approximation methods (k-means
algorithm and hybrid sampling method) to reduce the simulation time
during the optimization process. However, the accuracies of these tech-
niques are limited.

2.1. Contributions of this work

The main contributions of this work are the implementation of a
customized GA containing the following features: I- the different types of
fitness functions (minimization, central value, and maximization) that
were implemented in the MTGSPICE [14] were modified to consider the
robustness of the potential solutions which are obtained through the SSRA
(CA and/or MCA); II- the elitism process considers the most robust po-
tential solutions obtained to execute the crossover and mutation pro-
cesses; III- application of a reuse approach of the figures of merit
(specifications) previously obtained through the SPICE simulations
(nominal) and SSRA (CA and/or MCA) of the potential solutions (previous
generation), which will be used in the next generations of the evolution
process in order to reduce the time of the optimization process; V- limi-
tation of the maximum number of SSRAs by generation to be performed by
the evolution process, taking into account the number of robust potential
solutions already found.

Regarding all changes implemented in the standard GA, our proposal
is able to remarkably reduce the optimization times ranging from 23% to
79% in relation to standard approaches. In addition, a reuse technique of
the FoMs is proposed in this work. This methodology uses the FoMs
already utilized in previous generations to compose a new generation to
continue the evolution process of the analog CMOS ICs. Regarding four
different experiment conditions [standard fitness function and elitism
(SFFE) with the MCA (SFFE þ MCA), customized fitness function and
elitism (CFFE) with the MCA (CFFE þ MCA), CFFE with the CA (CFFE þ
CA), and CFFE with the CA plus MCA (CFFEþ CAþMCA)] considered in
this study, the average optimization cycle times were reduced by 53%,
45%; 33%, and 22%, respectively.

Moreover, we observed that the method CA plus MCA proposed in
this work was able to perform the optimization processes from 17 to 45
times faster than our previous approach described in Ref. [14], in which
the MCA is not included in the loop of the optimization process,
regarding two case studies with different OTAs. We have also observed
that when we use the CA plus MCA analyses in the SPICE simulations, the
number of robust potential solutions increases in relation to those
6

observed by using the previous approach described in Ref. [14]. Conse-
quently, the proposed strategies in this work are remarkably capable of
reducing the number of MCAs performed during the optimization pro-
cesses, favoring the use of the MCA in the loop of the optimization pro-
cess, without using approximation methods, which usually degrade the
accuracy of the robustness study of the analog CMOS ICs. Therefore, our
customized GA is able to reduce the optimization process cycle time,
without degrading the reliability and accuracy of the robustness study of
the analog CMOS ICs design.

3. The robustness driven optimization process

This section describes a novel robustness driven optimization process
implemented in an evolutionary system to optimize analog CMOS ICs,
named MTGSPICE. MTGSPICE, developed in visual Cþþ language, in-
tegrates the Spice Opus simulator [23] and incorporates the innovative
non-linear fitness functions proposed in Ref. [14]. Aiming to improve the
effectiveness of the optimization process and robustness (tolerance to the
variations to the manufacturing process and environmental conditions)
of the analog CMOS ICs designs, this computational tool is capable of
performing the optimization process by using the GA with the in-loop RA
regarding three different ways: I- executing the CA; II- executing the MCA,
and III- executing both the CA and MCA, in which the CAs are performed
first, and subsequently, the MCAs are performed only for those potential
solutions which met all desired specifications found by the CAs. The
flowchart of the customized GA concerning the SSRA (CA and/or MCA) in
the loop of the optimization process is illustrated in Fig. 1.

Block A of the flowchart of Fig. 1 is responsible for the configuration
of MTGSPICE according to Refs. [14,24]. The designer must provide 1)
the SPICE netlist [input file containing the description of the analog
CMOS IC, MOSFETs dimensions (channel length, L, and channel width,
W), the drain current (IPOL) and the common-mode input voltage (VPOL)
of the differential pair, and the technological parameters of the CMOS ICs
manufacturing process, which are the input design variables]; 2) the
desired specifications [open loop voltage gain (AV0); unit voltage gain
frequency (fT); phase margin (PM); DC output voltage (VOUT); power
consumption (PTOT); and total gate area of MOSFETs (AG), which are the
output variables] with their respective tolerance ranges; 3) the GA pa-
rameters [NCA and NMCA, which are the number of robust potential so-
lutions to be found in the optimization process through SPICE
simulations considering the CA and MCA, respectively, which are new
GA parameters implemented in this new MTGSPICE version; NIter is the
maximum number of generations to be evolved (stop criterion if NCA
and/or NMCA is not found); NP represents the population size; PC and PM
are the crossover and mutation rates, respectively;Wei are the weights of
each FoM of the fitness function, in which i is the index that represents
each FoM; and σ is the standard deviation of the Gaussian-based fitness
functions [14]]. Besides, we must configure the minimum and maximum
values of L and W of the MOSFETs and IPOL and VPOL of the differential
pair of the OTA. In addition, if the Miller OTA is being designed, the
minimum and maximum values of the Miller capacitance (Cf) must be
configured.

MTGSPICE performs a non-conventional evolution process, which is
performed in two stages. A more detailed flowchart of this computational
tool can be found in Ref. [24]. The first stage, named DC evolution
process and illustrated in Block B in Fig. 1, is responsible for evolving the
bias conditions of the MOSFETs to ensure that all operate in the desired
operation region, e.g. saturation region, and also meet the specifications
of the DC bias conditions of the analog CMOS IC, such as VOUT, PTOT, and
AG. In the end of the DC evolution process, NCA or NMCA potential solu-
tions are found, which meet the DC desired specifications of the analog
CMOS IC.

Posteriorly, the second stage of the evolution process of the
MGTSPICE, named AC evolution process, is started (Block C in Fig. 1).
Firstly, a population is randomly generated with NP potential solutions.
Secondly, the potential solutions found in the DC evolution process must
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randomly replace potential solutions (defined by NCA and NMCA), which
were created randomly in this second stage of the evolution process.

Block D of Fig. 1 is responsible for avoiding repeated potential solu-
tions. If this occurs, they are replaced by other which are generated
randomly. This step is important to better explore the search space of the
potential solutions and consequently to always obtain different robust
potential solutions.

Next, the evolutionary system of the MTGSPICE activates the execu-
tion of the SPICE simulations of the current generation (Block E of Fig. 1).
These simulations are responsible for obtaining the FoMs of the analog
CMOS IC (nominal desired specifications: AV0, fT, PM, VOUT, PTOT, and
AG). It is important to highlight that each potential solution of a specific
population is related to its FoMs (desired specifications), which are ob-
tained through the SPICE simulations. The FoMs and the design variables
(dimensions and bias conditions of the MOSFETs) of these potential so-
lutions are stored in memory. Knowing that the next generation of the GA
always contains at least the best potential solution evaluated of the
previous generation to ensure that the evolution process continues, its
SPICE simulation is not performed again (reuse strategy of the potential
solutions previously found) to avoid waste of time.

Block F of Fig. 1 is responsible for calculating the value of the fitness
function [Eval(FoMi): from 0 (out of specification) to 100 (fully meets the
desired specification)] of each FoM found, depending on the profile
considered for the fitness function (minimization, center value, and
maximization) [14], according to (1).

EvalðFoMiÞ ¼ 100 exp

 
� ε2TypðiÞ

2 σ2

!
; (1)

i is the index of the FoM; σ represents the standard deviation of the
Gaussian fitness function (defined by the designer), and εTyp(i) is the
relative error of the FoM found through the SPICE simulation in relation
to the desired specification, given by (2):

εTypðiÞ ¼ PerfTypðiÞ � SpecðiÞ
SpecðiÞ

; (2)

where PerfTyp(i) represents the nominal value of the FoM found through
the SPICE simulation; Spec(i) represents the desired value of the
specification.

The value of the fitness function of a potential solution (EvalSol)
[equation (3)] taking into account all FoMs found, aiming to meet all
desired specifications, is calculated by the weighted sum considering the
values of the FoMs and their corresponding weights (Wei), which are
defined by the designer [14].

EvalSol ¼
XNFoM

i¼1

EvalðFoMiÞ Wei; (3)

where NFoM is the total number of evaluated FoMs.
After all potential solutions are evaluated by (3), they are sorted from

the highest to the smallest fitness function values. Next, the potential
solution with the highest value of the fitness function will be used to
compose the next generation to ensure the continuation of the evolution
process.

Block G of Fig. 1 is responsible for verifying whether there are po-
tential solutions that meet all desired specifications simultaneously. If
they exist, MTGSPICE triggers the SSRA (only CA, only MCA, or both CA
plus MCA) of these potential solutions which are the best evaluated by the
fitness function given by (3), limited by NCA or NMCA, as shown in Block
H. The minimum and maximum FoMs values and the design variables
(dimensions and bias conditions of the MOSFETs) of these potential so-
lutions are also stored in memory. The objective is to avoid the per-
forming of repeated SSRAs in the future, if any potential solution of the
previous generation is used to compose the next generation. This reuse
strategy is frequently used by our proposal because the evolution process
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of the GA always takes into account either the best evaluated potential
solution(s) (while MTGSPICE does not find one robust potential solution)
or the most robust potential solution(s) found in the previous genera-
tion(s) evaluated. It is important to emphasize that in this work, all in-
dividuals (potential solutions) of the population that were not previously
evaluated are stored in computer memory along with their corresponding
performances (W, L, bias conditions, figures of merit and robustness
obtained by SPICE simulations) in which the user can limit the number of
stored solutions in order to save memory space.

Regarding Block I of Fig. 1, it is responsible for verifying if the
maximum and minimum FoM values obtained through the SSRA are be-
tween the maximum and minimum specifications values. Posteriorly,
MTGSPICE calculates the quantity of robust potential solutions. If robust
potential solutions do not exist, MTGSPICE calculates the relative errors
of each FoM of each potential solution which is obtained through the
SSRA. The relative errors are calculated depending on the profile type of
the fitness function (central value, minimization, and maximization
[14]): I- “central value”: as this specification is defined by the minimum,
nominal, maximum values, two errors are calculated. The first (second)
one is calculated considering the maximum (minimum) FoM value sub-
tracted from the nominal desired specification; II- “maximization”: as this
specification is defined by only one value (value of the desired minimum
specification); III- “minimization”: as this specification is defined by only
one value (value of the desired maximum specification). Besides, in the
case of the “central value” profile of the fitness function, the relative error
considered for the FoM [εWC(i)] is the one that presents the highest value
between the two relative errors found. Subsequently, MTGSPICE calcu-
lates the value of a new fitness function which takes into account these
relative errors [Eval(FoM)’]. This is done to penalize the FoMs of the
potential solutions found that present the highest relative errors, ac-
cording to (4), to reduce the chance of the least robust potential solutions
being chosen to compose the next generation of the GA evolution process
(selection, crossover, and mutation).

EvalðFoMiÞ’ ¼ 100 exp

 
� ε2WCðiÞ

2 σ2

!
; (4)

Afterwards, the values of the fitness functions regarding these non-
robust potential solutions (EvalSol) are recalculated by (3) to be consid-
ered in the robustness driven elitism process.

If there is at least one robust potential solution, the relative errors of
each FoM are calculated following the same procedure described for the
non-robust solutions. In addition, the robustness value of the robust
potential solutions (εPS) is calculated. It is obtained through the average
value of the relative errors of the robust potential solutions taking into
account the minimum and maximum values of each FoM in relation to
the desired specifications. The higher this error, the worse is the value of
its robustness. This is done aiming to perform the ranking of the best
robust potential solutions which must be provided to the designer,
depending on the values of NCA and/or NMCA. If the total number of
robust potential solutions is not achieved, which is defined byNCA and/or
NMCA, MTGSPICE saves the robust potential solutions found so far to be
used to compose the next generation through the elitism, selection,
crossover, and mutation processes (Block J of Fig. 1). If we have more
than NCA and/or NMCA robust potential solutions, they are resorted from
the smallest to the highest robustness value (εPS) and the most robust
potential solutions are provided to the designer.

Block K of Fig. 1 performs the innovative robustness driven elitism
process. If the RAs (only CA, only MCA, or both CA plus MCA) are not
selected in the MTGSPICE by the designer, the elitism process to be
performed is the standard one, i.e. the best potential solution (which
presents the highest value of the fitness function) is selected to continue
the GA evolution process. If the only CAmethod is selected, the potential
solutions that present the highest robustness (smallest εPS) are selected to
continue the GA evolution process, in which the maximum number of
robust solutions to be found is limited by the NCA parameter. If the only
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MCA method is selected, the potential solutions that present the highest
robustness are designated to continue the GA evolution process, in which
the maximum number of robust solutions to be found is limited by the
NMCA. If the CA plus MCA method is selected, the potential solutions that
present the highest robustness values of the MCA are selected to continue
the evolution process, where the maximum number of robust solutions to
be found is limited by theNMCA, due to theMCA is more accurate than the
CA.

However, if a potential solution is robust only by the CA and it is not
robust by the MCA, the elitism process considers the robust potential
solutions by the CA during the optimization process until it meets the
robustness regarding both methods (CA plus MCA). Afterwards, the
population is reordered from the highest to smallest fitness function
values (EvalSol). Subsequently, the most robust potential solutions found
by one of these methods (CA, MCA, or CA plus MCA) must replace the
potential solutions of the current generation that present the smallest
values of fitness functions. In the case of the CA plus MCA method, the
most robust potential solutions found through the MCA must replace the
potential solutions of the current generation that present the smallest
values of fitness functions. Then, the current population is reordered, in
which the value of the fitness function of each individual is changed
taking into account its robustness. On the other hand, if there are no
robust solutions previously saved, then the solution that presented the
highest value of the fitness function in the population, before the RAs, is
identified. If the fitness function value EvalSol, obtained by (3), was
downgraded through the fitness function driven by robustness in (4),
then the original fitness function value is restored. This is done to avoid a
stagnation of the evolution process while there are no robust solutions.

In Block L of Fig. 1, the input variables (L, W, bias conditions of the
MOSFETs), FoMs (AV0, fT, PM, etc.) of the CMOS IC and the value of the
fitness function (EvalSol) of the best robust potential solution are saved in
a data log and plotted on graphics, in real time, allowing the designer to
observe how the optimization process happens to meet the desired
specifications. Fig. 2 shows the monitoring of the value of the fitness
function of the best robust potential solution, FoMs found by the
MTGSPICE, taking into account the CA and/or MCA in the loop of the
optimization process as a function of the number of iterations.

Block M of Fig. 1 is responsible for performing the selection (binary
tournament [13]), crossover (single-point crossover [13]), and bit flip
mutation [13] genetic operators in the current generation to create a new
generation to be optimized.

Block N of Fig. 1 is responsible for stopping the GA optimization
process by verifying if the NCA or NMCA robust potential solutions are
found or the maximum number of iterations (NIter) is reached. If these
two conditions are not reached, a new generation is optimized.

Block O in Fig. 1 is responsible for providing the potential solutions
found through the GA optimization process.

4. CMOS OTAs’ topologies

Fig. 3 illustrates the electrical circuits of the topologies of two CMOS
OTAs used in this work. The first one, Fig. 3(a), is a single-ended single-
stage OTA (SESS) [25]. We have chosen this topology because it is an
important basic analog building block that is applied in a wide variety of
analog CMOS ICs applications, such as voltage gain amplifiers, compar-
ators, data recovery circuits in radio frequency (RF) identification de-
vices, voltage-controlled oscillators, optical transceivers, and filters [14].
The second one, illustrated in Fig. 3(b), is the cascoded-bias Miller--
compensated OTA (CBMC) [26], which is also a basic building block
widely used in analog electronics [14,26].

In Fig. 3(a), CL is the capacitive load, VDD and VSS are the positive and
negative voltages of the symmetrical supply, respectively, VOUT is the
OTA output voltage, vIþ and vI- are the non-inverting and inverting input
voltages of the OTA, respectively, IPOL is the current source of the dif-
ferential pair of the OTA, M3 andM5 and alsoM4 andM6 are pMOSFETs,
which work as current mirrors, and M7 and M8 are nMOSFETs that also
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operate as current mirrors. Besides, the pairs of MOSFETs M1-M2, M3-
M4, M5-M6, and M7-M8 are matched, but M9 and M10 are not neces-
sarily matched aiming to obtain a better current mirroring [14]. In the
designs of these two OTAs, we consider that the MOSFETs’ channel
lengths (L) of the current mirrors present the same value for the proper
matching of the Vth regarding the MOSFETs in the current mirror
configuration [14]. In Fig. 3(b), M1 and M2 are nMOSFETs (matched
differential pair), M3 andM4 are pMOSFETs (matched active loads of the
differential stage working in the current mirror configuration), M5 is a
pMOSFET, and M11 is an nMOSFET which composes the output stage
(second stage). M6, M7, and M8 are also nMOSFETs in cascode config-
uration operating as current mirrors [26]. The nMOSFET pairs M9-M10
and M9-M11 operate as current mirrors biasing the first and the sec-
ond stage, respectively. They are not necessarily matched in this work;
however, they have the same L [14]. Additionally, Cf is the compensation
capacitance which is electrically connected between the first and second
stages, adjusted to obtain the desired phase margin [26].

5. OTAs’ specifications and configuration parameters of
MTGSPICE

The design specifications of the SESS [25] and CBMC [26] OTAs are
presented in Table 1. The specifications regarding the SESS were adapted
from the Silicon-On-Insulator (SOI) technology, however, they were
obtained experimentally by SPICE simulations regarding robust potential
solutions with the use of a different CMOS IC manufacturing process
(Bulk technology).

In Table 1, μP_SESS means that the SESS OTA operates in micropower
bias conditions and HG_CBMC means that the CBMC operates with high
voltage gain in ultra-low power bias conditions. In addition, six different
specifications are taken into account for these OTAs: AV0, fT, PM, VOUT,
PTOT, and AG. This experiment considers the tolerances of the desired
specifications to be equal to �10%, except the PM of the SESS OTA,
whose lower limit is set to �10% and the upper limit to þ3.45%, due to
the maximum typical value adopted for the PM to be 90� [25]. The
designer can set the minimum, nominal, and maximum values of the
desired specifications. This additional feature implemented in the
MTGSPICE is intended to help non-expert designers to find robust po-
tential solutions in practice as close to feasible specifications as possible.
Consequently, these designers can better specify an analog CMOS IC to be
used in a project, change the architecture of the circuit, choose a more
sophisticated manufacturing process to implement it, etc.

Moreover, in these designs of the OTAs, all transistors must operate in
the saturation region (functional constraints). The capacitive load (CL) is
adopted to be equal to 15 pF (μP_SESS) and 1 pF (HG_CBMC), respec-
tively. Additionally, the symmetric supply voltages (VDD and VSS) applied
to the μP_SESS and HG_CBMC OTAs are� 1.25 V and �0.5 V, respec-
tively, and their operating temperatures are considered to be equal to
27 �C. The Bulk CMOS ICs manufacturing processes used to implement
the μP_SESS and HG_CBMC OTAs are respectively 350 nm from the ON
Semiconductor and 130 nm Silicon–Germanium (SiGe) from Global-
foundries (IBM) [27].
5.1. Optimization parameters of the OTAs

Table 2 presents the ranges of values adopted for the optimization
parameters related to the MOSFETs’ dimensions (minimum, maximum,
and step size values) to perform the evolution processes of the μP_SESS
and HG_CBMC OTAs, respectively. These values were defined by the
designers regarding their previous knowledge and experiences in analog
CMOS ICs designs. Furthermore, the parameters regarding the geometric
variables [channel length (L) and width (W)] of the MOSFETs were set to
present dimensions which are proportional to the grid of the design rules
of the CMOS ICs technologies used in each OTA design, aiming to facil-
itate their layouts’ implementations.
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5.2. Fitness functions parameter settings

The default values for the weights (Wei) of the GA fitness function for
all OTA FoMs (desired specifications) were considered the same to
perform the DC evolution process, i.e. 33.3% for VOUT, PTOT, and AG.
Similarly, regarding the AC evolution process, we have considered the
same weights (16.7%) for the FoMs (AV0, fT, PM, VOUT, PTOT, and AG).
These weights can be redefined by the designers. It is important to
highlight that our recommendation for the designers is to consider the
weights with the same values (default values) [14]; however, if robust
potential solutions are not found through the GA optimization process,
the designer can change them during the evolution process to facilitate
the analog CMOS ICs optimization.

5.3. DC evolution process parameters considered

The population sizes (NP) were set to be equal to 20 and 30, respec-
tively, for the μP_SESS and HG_CBMC OTAs. NIter (maximum number of
generations to be evaluated) was set to be equal to 5000. The σ parameter
of the Gaussian fitness function was set to 0.08 for all profiles considered
(minimization, maximization, and central value), which is related to a
maximum tolerance of 10% for the desired specifications (figures of
merit of the OTAs) [14]. Two new parameters were added to the
MTGSPICE, named NCA and NMCA. The NCA represents the number of
desired robust potential solutions by the designer, which is obtained
through the SPICE simulations regarding the DC analysis with the CA.
The NMCA is similar to the NCA, but it is related to the MCA. If the number
of desired robust potential solutions, given by NCA and/or NMCA, is ob-
tained before the Niter is reached, the GA optimization process is ended.
The number of runs (NR) parameter was set to be equal to 1. This means
that in the end of the DC evolution process, we have obtained NCA or
NMCA DC robust potential solutions.

Besides, it is important to emphasize that after the DC optimization
process is ended, the best DC potential solutions, given by NCA or NMCA,
are used to compose the initial population to perform the AC evolution
process of the OTAs.

5.4. AC evolution process parameters

The population sizes (NP) were set to be equal to 50 and 100,
respectively, for the μP_SESS and HG_CBMCOTAs. The NIter value was set
to be equal to 5000 for both designs of the OTAs. The σ parameter
regarding the fitness functions is set to 0.08 [14]. In order to obtain a
higher number of robust potential solutions, the NR parameter was set to
be equal to 10 for both OTAs. For each run, a different seed is considered
for the random generator used by the optimization process, which cor-
responds to the different initial populations (sets of individuals or chro-
mosomes, which represent the dimensional parameters and bias
conditions of MOSFETs). At the end of the AC evolution process, we
obtained 10 (NR) multiplied by NCA or NMCA robust potential solutions
(for example, if NR¼ 10 and NCA¼NMCA¼2, we would have 20 robust
potential solutions). However, from these 10 (NR) multiplied by NCA or
NMCA robust potential solutions, we would only consider the NCA or NMCA
best robust potential solutions obtained. Besides, the single-point cross-
over was applied with a probability (PC) of 0.7, and the mutation prob-
ability (PM) is set to 0.03 [14].

5.5. CA and MCA parameters

Regarding the SSCA, we have considered 3σ variations related to the
CMOS ICs manufacturing processes used to perform this work, taking
into account the threshold voltages (Vth) and mobility of the charge
carriers along the channel length (μ0) of MOSFETs, where the 0 in μ0 can
be considered n for electrons or p for holes. These parameters are
responsible for affecting the main analog parameters of the MOSFETs,
such as the transconductance (gm). The extreme global variations of Vth
9

and μ0 were set to �10% and �6%, respectively, for the nMOSFETs, and
�12% and �10%, respectively, for the pMOSFETs [28]. Therefore, the
extreme operating conditions of the nMOSFETs and pMOSFETs were
considered during the CA. In the operating condition named Fast-Fast, the
nMOSFETs and pMOSFETs operate at the maximal gm. In the operating
condition named Slow-Slow, the nMOSFETs and pMOSFETs operate at the
minimal gm. In the operating condition named Fast-Slow, the nMOSFETs
operate at the maximal gm and the pMOSFETs at minimal gm. Finally, in
the operating condition named Slow-Fast, the nMOSFETs operate at the
minimal gm and the pMOSFETs at maximal gm. In addition, the lowest
value of the Vth and the highest value of μ0 define the maximal gm, and the
highest value of the Vth and the lowest value of μ0 define the minimal gm
regarding the nMOSFETs and pMOSFETs. Besides the four operating
conditions (Fast-Fast, Slow-Slow, Fast-Slow, and Slow-Fast), environmental
variations were also considered. Therefore, two temperatures, 0 �C and
75 �C, were considered for each operating condition, totalizing eight
combinations.

The SSMCA takes into account the local and global variations of the Vth
and μ0 (considering Gaussian profiles) and temperature [25]. As we
considered 50 global variations (NGLob), 50 local variations (NLoc), and
two different temperatures (0 �C and 75 �C), each SSMCA has performed
5000MCA analyses (NGLob⋅NLoc⋅2). The standard deviations of the Vth and
μ0 global variations were set to �3.3% and �2%, respectively, for the
nMOSFETs, and �4% and �3.3%, respectively, for the pMOSFETs [28].
Besides, the standard deviations considered for the Vth (σM_Vth) and
μ0 (σM_μ0), due to the local mismatches between the MOSFETs, are given
by AVth =

ffiffiffiffiffiffiffiffiffiffiffi
2WL

p
and Aμ0 =

ffiffiffiffiffiffiffiffiffiffiffi
2WL

p
, respectively, where AVth and Aμ0

represent the proportionality constants of the Vth and μ0, which are ob-
tained experimentally [28]. The AVth and Aμ0 parameters used for the
nMOSFETs are 5� 10�3 V μm and 1.04� 10�2 μm, respectively, and
5.49� 10�3 V μm and 0.99� 10�2 μm for the pMOSFETs [28].

In this work, we have considered only the default parameters that are
considered in SPICE Opus simulator to perform theMonte Carlo analyses.
However, the designers can consider in their simulations all parameters
of the manufacturing process which can be important to design the CMOS
IC. To do this it is necessary that designers add the other parameters in
the input file (netlist) of the IC optimized by the MTGSPICE. The cycle
time of the optimization process depends on the number of the param-
eters considered in the robustness analyses (Corner and Monte Carlo).

6. Results

MTGSPICE was run in a 3.4 GHz IBM-PC with 24 GB RAM and Win-
dows 10 (operating system). The experiments of this work were per-
formed concerning three different robustness conditions: I) taking into
account the SPICE simulations regarding AC analysis with the CA (SSCA);
II) taking into account the SPICE simulations regarding AC analysis with
the MCA (SSMCA); and III) taking into account the SPICE simulations
regarding AC analysis with the CA plus MCA (SSCAþMCA). For each
robustness condition, we have configured MTGSPICE under three
different optimization process conditions using the customized fitness
function, which degrades the value of the fitness function of the potential
solutions that present one or more FoMs out of the desired tolerance
range of the desired specification. Moreover, the robust elitism considers
the most robust potential solutions obtained to execute the crossover and
mutation (CFFE): I) The NCA was set to be equal to 2, 5, and 10,
respectively, aiming to obtain two, five, and ten robust potential solu-
tions by performing the SSCA; II) TheNMCAwas set to be equal to 2, 5, and
10, aiming to obtain two, five, and ten robust potential solutions by
performing the SSMCA; III) The NCA and NMCA were set to be equal to 2, 5,
and 10, which have obtained two, five, and ten robust potential solutions
by performing the SSCAþMCA. It is important to emphasize that the NCA
and NMCA were configured to present the same values regarding the
optimization processes performed in this work (DC and AC evolution
processes).
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Furthermore, another experiment was carried out for comparison
purposes with the experiments previously described, considering the
standard evolution process with the GA, taking into account the SSMCA in
the optimization loop. In order to perform this study, we used
MTGSPICE, but the DC evolution process was not applied, the non-robust
potential solutions by performing the SSMCA were not penalized by the
use of the fitness function driven by robustness (Block I of Fig. 1), and the
robustness driven elitism (Block K of Fig. 1) was not used (the conven-
tional elitism was applied), where only the potential solution that pre-
sented the highest value of the fitness function in each generation of the
GA was selected as the best potential solution to be used in the next
generation of the evolution process. Therefore, this optimization condi-
tion will be identified as the standard fitness function and elitism (SFFE).
This experiment considers the use of the following settings: NMCA was set
to be equal to 2, 5, and 10, which are responsible for obtaining two, five,
and ten final robust potential solutions.

Additionally, we have performed ten runs (NR¼ 10) regarding ten
different seeds, which were generated randomly, for each one of the
three different conditions for the robustness analyses to be performed
(SSCA, SSMCA, and SSCAþMCA). However, to reduce the stochastic differ-
ences due to the use of different random seeds in these experiments, we
used the same set of ten seeds for each robustness analysis (with the CA,
MCA, and CA plus MCA). At the end of these AC evolution processes
regarding the robustness analyses, we have 10 multiplied by NCA or 10
multiplied by NMCA robust potential solutions, in which NCA or NMCA
potential solutions are obtained from each optimization run. Therefore,
to perform the experiments in this work, we have selected only the best
robust potential solutions (smallest εPS) that were obtained through the
SSCA, SSMCA, and SSCAþMCA, respectively, considering each optimization
run.

6.1. Design optimization cycle times of the OTAs

The objective of this first analysis is to evaluate the optimization cycle
times (OCTs) of the designs of two different OTAs taking into account
three different robustness analyses (CA, MCA, and CA plus MCA), two
different evolution processes, SFFE and CFFE, and by using the reuse
strategy (Re) of the FoMs (AV0, fT, PM, etc.) obtained through the SPICE
simulations regarding the AC analysis with RAs of the potential solutions
in the previous generation that are used in the next generation to
continue the GA evolution process. Table 3 presents the average values
and standard deviations in percentage [SD (%)] of the OCTs in minutes,
considering different NCA and/or NMCA (2, 5 and 10), ten different runs,
two different OTAs (μP_SESS and HG_CBMC), without and with the uti-
lization of the reuse strategy, respectively, and two different evolution
processes have been considered in this study. These studies were classi-
fied as: I- Use of the SFFE of the GA by using the SSMCA (indicated by
SFFEþMCA); II- Use of the CFFE of the GA by using the SSMCA (indicated
by CFFE þ MCA); III- Use of the CFFE of the GA by using the SSCA
(indicated by CFFE þ CA); IV- Use of the CFFE by using the SSCAþMCA
(indicated by CFFE þ CA þ MCA). All these studies were also performed
considering the reuse strategy, indicated by “Re” in Table 3.

By analyzing Table 3, regarding the μP_SESS and HG_CBMC designs,
with and without the application of the reuse strategy, we observe that by
increasing the number of robust potential solutions, the OCT also in-
creases, concerning the MCA (SFFE þ MCA and CFFE þ MCA for NMCA
equal to 2, 5, and 10). This fact can be justified due to a higher number of
SSMCA that must be performed to reach the desired specification. More-
over, the same results also can be seen regarding CFFE þ CA for NCA
equal to 5 and 10 for both OTAs and also CFFE þ CA þMCA for NCA and
NMCA equal to 5 and 10 for the μP_SESS design. However, these results are
not observed for the CFFEþ CA forNCA equal to 2 and CFFEþ CAþMCA
for NCA and NMCA equal to 2. This can be explained because although the
CA is faster than the MCA, it is strongly impaired by the use of a smaller
number of robust DC potential solutions to compose the initial generation
(population) to be evolved by the AC evolution process (for instance: the
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design OCT regarding the CFFE þ CA for NCA equal to 2 is almost double
than the CFFE þ CA for NCA equal to 5, for both OTAs designs). Besides,
this can also happen because of the feature of the CFFE þ CA to consider
the most limiting operating conditions of MOSFETs. It is important to
note that the CFFE þ CA þ MCA for NCA and NMCA equal to 2, 5, and 10,
regarding the HG_CBMC design, presents an inverse trend to the cases
analyzed before as the OCTs are reduced. This occurs because the inno-
vative robustness driven elitism process exploits the most robust poten-
tial solutions found during the optimization process to find other new
potential solutions to compose the next generations through the cross-
over and mutation processes.

Additionally, the standard deviations of the results obtained in this
study are usually high (greater than 20%). This can be explained because
the GA evolution process depends on the initial population (generation),
which is randomly generated. Besides, we can also observe that only the
optimization process regarding the CFFE þ CA þMCA for NCA and NMCA
equal to 10 presents the smallest values of the standard deviations (about
25%) for both μP_SESS and HG_CBMC OTA designs. This happens
because it uses a higher number of robust DC potential solutions (10 in
this case), i.e. a smaller number of potential solutions created randomly
than the others (2 and 5) to compose its initial population. It also uses a
higher number of robust potential solutions in its robustness driven
elitism and, consequently, in the crossover and mutation processes.

Considering the μP_SESS OTA studied, we observed that the reuse
technique, regarding all the robustness analyses considered (SFFE þ
MCA, CFFE þ MCA, CFFE þ CA, and CFFE þ CA þ MCA), is capable of
reducing the average OCTs by approximately 50%, 47%, 32%, and 22%,
respectively, in comparison to the analyses performed without consid-
ering the reuse strategy. Furthermore, we observed that the reduction of
the average OCTs regarding the HG_CBMC design follows the same trend
of those observed in the μP_SESS design (56%, 43%, 33%, and 21%),
when we use the reuse strategy. Therefore, we also conclude that the
reuse strategy of the FoMs already obtained through the SPICE simula-
tions considering the AC analysis with robustness analyses of previous
generations in the evolution process of the next generations is able to
remarkably reduce the OCTs of the OTAs’ designs, especially for the
optimization processes that consider the MCA. Moreover, the reuse
strategy applied for the CFFE þ CA þ MCA approach presents a smaller
capability to reduce the OCTs of the OTAs’ designs in relation to the other
approaches performed by only using the Monte Carlo or corner analyses.
This occurs because it is already able to reduce the OCTs due to it in-
tegrates an innovative customized fitness function which considers the
robustness of the potential solutions found, a new elitism process which
takes into account the most robust potential solutions to generate the
next generations to continue the evolution process and use the most
robust potential solutions found in the SSCA to compose the next gener-
ations to be evolved by using the SSMCA and consequently reducing the
benefits of the reuse strategy.

Another important result that we have observed is that the novel
approaches proposed by this work (CFFE and the use of the MCA and the
CAþMCA, without or with the reuse strategy) also are able to reduce the
OCT by 37% (CFFE þMCA), 33% (CFFE þMCA þ Re), 79% (CFFE þ CA
þ MCA), and 68% (CFFE þ CA þ MCA þ Re) respectively, regarding the
μP_SESS design, and 44% (CFFEþMCA), 26% (CFFEþMCAþ Re), 68%
(CFFE þ CA þ MCA), and 43% (CFFE þ CA þ MCA þ Re), respectively,
considering the HG_CBMC design, in relation to the SFFE with the use of
the MCA without the reuse strategy (SFFE þ MCA) and with the reuse
strategy (SFFE þ MCA þ Re).

Furthermore, considering the approaches that use the SSMCA in the
loop of the optimization process (SFFE þ MCA, CFFE þ MCA, and CFFE
þ CA þ MCA, with and without the reuse strategy), the fastest are the
CFFEþ CAþMCA and CFFEþ CAþMCAþ Re. This can be explained as
these approaches use the SSCA initially to find some robust potential
solutions which are posteriorly used to perform the evolution process
through the SSMCA. This customized approach between these two RAs
(CA and MCA) proposed by our work was capable of reducing the
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average OCT by 79%, 68%, 67%, and 52%, respectively, in relation to the
SFFE þ MCA and CFFE þ MCA, with and without the reuse strategy,
regarding the μP_SESS design, and by 68%, 43%, 44%, and 23%,
respectively, considering the HG_CBMC design. In addition, the CFFE þ
CA þMCA þ Re approach presented average OCTs 65% and 16% higher
than those found in the CFFEþ CAþ Re approach, regarding the μP_SESS
and HG_CBMC designs, respectively. Our results have been able to reduce
the OCTs of the OTAs’ designs without impairing the accuracy of the
robustness and without reducing the search space of the potential solu-
tions, obtaining similar results in terms of OCTs of an OTA’s design, as
described by Ref. [9].

Another experiment has been performed to evaluate the effectiveness
of the customized GA optimization process with in-loop CA plus MCA
(CFFE þ CA þ MCA þ Re indicated in Table 4) proposed in this work in
relation to that described in Ref. [14]. Ref. [14] considered the GA and
the Gaussian profile for the fitness functions, in which 30 optimization
runs were performed using Spice simulations without in-loop MCA. The
robustness analyses with the MCAs were performed considering those
with the highest values of the fitness function, regarding each run
(NR¼ 30). Table 4 presents the average OCTs regarding the CFFEþ CAþ
MCA þ Re (NCA¼NMCA¼10) approach and average OCTs obtained by
using the approach in Ref. [14] for the μP_SESS and HG_CBMC OTAs’
designs. Besides, the number of robust solutions (N� Sol.) obtained after
the MCA is also presented.

Analyzing Table 4, considering the μP_SESS and HG_CBMC OTAs, we
have observed that the OCTs obtained through the innovative CFFE þ
CA þ MCA þ Re approach were respectively 45 and 17 times faster than
those found by using the approach of ref. [14]. Furthermore, it is
important to observe that the CFFE þ CA þMCA þ Re approach also has
obtained a higher number of robust potential solutions after the RAs with
the MCA for both OTAs in relation to those obtained by Ref. [14].
Therefore, this innovative customized GA evolution process proposed in
this work, besides being remarkably faster, is also capable of searching
and finding a higher number of robust potential solutions than the typical
GA evolution process.

6.2. OTAs’ robustness

An analog CMOS IC must only be manufactured after the designer
performs a detailed and exhaustive study of its robustness, aiming to
reduce the risk of malfunction after its manufacture [4]. In order to
illustrate the robustness through a box plot of the μP_SESS and HG_CBMC
OTAs regarding each approach for the GA evolution process imple-
mented in the MTGSPICE (SFFEþMCAþ Re; CFFEþMCAþ Re; CFFEþ
CA þ Re; CFFE þ CA þMCA þ Re), we have considered 10 runs and NCA
and/or NMCA equal to 2, 5, and 10. Hence, we have obtained, respec-
tively, 20, 50 and 100 robust potential solutions of each GA evolution
process approach. In order to generate the box plot of the robustness of
the best potential solution (smallest εPS) of each OTA, regarding each
evolution process approach, we have had to run the SSMCA of these best
robust potential solutions to use all results of these simulations (mini-
mum andmaximum values of the FoMs due to the variations of the CMOS
ICs’ manufacturing process and environment conditions). Therefore,
Fig. 4 illustrates the relative deviations in percentage of each FoM in
relation to their desired specifications (box plots), which were obtained
from the SSMCA of the most robust potential solutions of the μP_SESS and
HG_CBMC OTAs, regarding the different GA evolution processes imple-
mented in the MTGSPICE.

It is important to highlight that MTGSPICE is able to obtain different
solutions. However, the designer can choose any one which best suits his
needs taking into account the most desired specifications (AV0, fT, PTOT,
etc.). However, the most important result observed is that all of them
were capable of meeting the desired specifications with maximum errors
smaller than 10%. Furthermore, we have not included the values of the
area regarding the solutions in Fig. 4 because they were not subject to
variations in the Monte Carlo analysis. The values of the areas regarding
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the four approaches (SFFE þMCA; CFFEþMCA; CFFEþ CA; CFFEþ CA
þ MCA) considering NCA and/or NMCA equal to 2, 5, and 10 for the
μP_SESS and HG_CBMC OTAs are respectively: 3903; 3903; 3694; 1967;
3373; 6013; 2588; 2364; 6013; 2588; 2375; 6013; 310; 150; 288; 192;
260; 213; 163; 208; 281; 163; 293; 239 (μm2).

Analyzing Fig. 4, we can see that the yields of all designs of the OTAs
are equal to 100% as all GA optimization processes have ensured that the
minimum and maximum values of all FoMs obtained through the SSMCA
are within the tolerance ranges of the desired specifications (10% in this
case, which were set by the designer). Besides, regarding all types of
approaches of GA evolution processes and OTAs considered in this study,
we can observe that the average relative errors in percentage regarding
all FoMs (εPS) are always smaller than 3.7%. This means that all inno-
vative types of approaches of GA evolution processes are capable of
producing similar robust potential solutions in relation to standard GA
evolution processes, i.e. they do not degrade the robustness of the po-
tential solutions found.

Furthermore, all these robust potential solutions present maximum
standard deviations of the FoMs smaller than 5.2%. This means that the
effectiveness of the search by robust potential solutions, regarding all
approaches of GA evolution processes, are suitable. Besides, we observe
that the robustness of the potential solutions found is only slightly
affected (maximum errors smaller than 3.7%) by the number of potential
solutions to be found by Corner (NCA) or by Monte Carlo (NMCA) analyses
used in these experiments, which were set to 2, 5 and 10, respectively.
Similar conclusions were obtained performing the comparison between
the CFFE þ CA þ MCA þ Re and that obtained by Ref. [14]. This can be
justified due to FoMs set close to their maximum or minimum feasible
boundaries of its specifications and the characteristics of a fitness func-
tion which is based on a weight sum, which can be improved to further
boost the robustness of the potential solutions.

7. Conclusion

This manuscript proposes and qualifies a customized genetic algo-
rithm which incorporates an innovative modified fitness function and
elitism process that takes into account the robustness (Corner and Monte
Carlo analyses), without degrading the cycle time of the optimization
process of the analog CMOS ICs designs. This is achieved by considering
only a reduced number of the best robust potential solutions found and
without restricting the number of samples of the Monte Carlo analysis.
Furthermore, regards the procedure of reuse strategy of the results of the
Monte Carlo analysis already obtained previously. We can observe that
by using these several approaches, the cycle time of the optimization
process of analog CMOS ICs designs can be reduced from 23% to 79% in
comparison to the standard optimization process of the GA. Besides, the
maximum average error of the figures of merit obtained by the
MTGSPICE in relation to the desired specifications of analog ICs was of
3.7%, regarding all optimization processes proposed by this work.
Therefore, we can conclude that our customized GA can be considered an
alternative strategy to optimize robust analog CMOS ICs that meet the
desired specifications and with a cycle time of the optimization process
very much reduced (around 1 h).
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