
CENTRO UNIVERSITÁRIO FEI

LUCAS CESAR FERREIRA DOMINGOS

MACHINE LEARNING METHODS FOR VESSEL TYPE CLASSIFICATION WITH

UNDERWATER ACOUSTIC DATA

São Bernardo do Campo

2022



LUCAS CESAR FERREIRA DOMINGOS

MACHINE LEARNING METHODS FOR VESSEL TYPE CLASSIFICATION WITH

UNDERWATER ACOUSTIC DATA

Master’s Thesis, presented to the Centro Uni-
versitário FEI to obtain the title of Master in
Electrical Engineering. Oriented by Prof. Dr.
Paulo Eduardo Santos.

São Bernardo do Campo

2022



Cesar Ferreira Domingos, Lucas.

     Machine learning methods for vessel type classification with

underwater acoustic data / Lucas Cesar Ferreira Domingos. São Bernardo

do Campo, 2022.

     89 f. : il.

     Dissertação - Centro Universitário FEI.

     Orientador: Prof. Dr. Paulo  Eduardo Santos.

     1. Aprendizado Profundo. 2. Acústica. 3. Hidrofones. 4. Subaquática.

5. Embarcações.   I.  Eduardo Santos, Paulo, orient. II. Título.

Elaborada pelo sistema de geração automática de ficha catalográfica da FEI com os

dados fornecidos pelo(a) autor(a).



 

                                                                                                                                                                                           Versão 2022 

APRESENTAÇÃO DE DISSERTAÇÃO 
ATA DA BANCA EXAMINADORA 

Programa de Pós-Graduação Stricto Sensu em Engenharia Elétrica 

Mestrado 

PGE-10 

Aluno(a): Lucas Cesar Ferreira Domingos                          Matrícula: 120306-6 
 
Título do Trabalho: Machine learning methods for vessel type classification with 
underwater acoustic data 
 
Área de Concentração: Inteligência Artificial Aplicada à Automação e Robótica 
 
Orientador(a): Prof. Dr. Paulo Eduardo Santos 
 
Data da realização da defesa: 20/10/2022  
 
 

Avaliação da Banca Examinadora: 

   A defesa de mestrado do candidato Lucas Domingos iniciou-se às 9:00am (horário de Brasília) 

do dia 20/10/2022 e contou com a presença de todos os membros da banca avaliadora: Prof. 

Carlos E. Thomaz, Prof. Flávio Buiochi e eu (orientador) Prof. Paulo Santos, convidados e 

familiares também estavam presentes. A banca ocorreu por meio de vídeo conferência, sem ter 

havido alguma ocorrência que mereça destaque. O aluno apresentou o seu trabalho em 45min, 

respeitando o prazo previsto, e respondeu aos questionamentos dos membros da banca de 

maneira satisfatória. A banca considerou o trabalho com nível suficiente para justificar sua 

aprovação por unanimidade.    
 

                 
A Banca Julgadora acima-assinada atribuiu ao aluno o seguinte resultado: 
 
APROVADO                                                    REPROVADO  
 

 

MEMBROS DA BANCA EXAMINADORA 

 
 
 
 Prof. Dr. Paulo Eduardo Santos 
 
 
 
 Prof. Dr. Carlos Eduardo Thomaz 
 
 
 
 Prof. Dr. Flávio Buiochi 
 

 
Aprovação do Coordenador do Programa de Pós-graduação 

 
 

 
                            

                                     Prof. Dr. Carlos Eduardo Thomaz                                                                 

ORIGINAL ASSINADA 



To my parents, Fernando and Amelia, who always

supported me.



ACKNOWLEDGMENT

Thanks to Phillip Skelton, Russel Brinkworth and Karl Sammut for their useful comments,

spending time correcting and suggesting changes to this present work.

Special thanks to the Instituto de Pesquisas Eldorado, for providing financial assistance

and time to finish the requirements for this work.



“To the person who pleases him, God gives wis-

dom, knowledge and happiness, but to the sinner

he gives the task of gathering and storing up

wealth to hand it over to the one who pleases

God. This too is meaningless, a chasing after the

wind.”

Ecclesiastes 2:26



RESUMO

A identificação de embarcações em ambientes de tráfego controlado pode ser benéfica

para manutenção da biodiversidade e proteção dos ambientes costeiros de regiões protegidas,

gerando contribuições para a comunidade local e para o ecossistema. Nesse âmbito, vê-se

latente a necessidade de melhores técnicas de identificação e classificação de embarcações,

proporcionando mecanismos para melhora destes sistemas. Sinais sonoros subaquáticos são

mais difíceis de serem mascarados ou omitidos durante a navegação de uma embarcação quando

comparados com outras fontes de dados, proporcionando uma fonte confiável e resistente a

fraudes para sistemas de classificação, porém, estes sofrem interferências das condições do meio

em que se encontram. Neste trabalho, uma metodologia foi proposta para realizar a classificação

de sinais sonoros subaquáticos provenientes de embarcações utilizando técnicas de aprendizado

de máquina, considerando também as variáveis ambientais, como a distância entre os hidrofones e

as embarcações. Uma comparação relativa à performance das redes neurais convolucionais mais

comuns foi realizada utilizando a arquitetura da VGG e da ResNet 18. Também foram realizadas

comparações entre os três filtros de pré-processamentos comumente presentes na literatura, os

espectrogramas Mel, os filtros Gamma, e a transformada de constante Q, proporcionando um

estudo sobre o impacto de tais variáveis na classificação final. Devido a escassez de conjuntos

de dados anotados para estudo deste problema, um conjunto de dados anotados foi proposto

utilizando como base os sinais sonoros da iniciativa Ocean Canada Network. Os resultados

obtidos atingiram a acurácia de 94.95% no conjunto de dados proposto usando CQT como filtro

de pré-processamento para uma rede neural convolucional baseada na ResNet. Os códigos fontes

para reprodução dos testes, assim como para obtenção do dataset, estão disponibilizados de

maneira gratuita e pública para fins acadêmicos.

Palavras-chave: Aprendizado Profundo. Acústica. Hidrofones. Subaquática. Embarcações.



ABSTRACT

Vessel identification in a controlled traffic environment can be beneficial for biodiversity

maintenance and coastal environment surveillance in protected regions, generating contributions

to the local community and the ecosystem. In this context, there is a latent need for better

techniques for identifying and classifying vessels, providing mechanisms to improve these systems.

Underwater sound signals are more challenging to be masked or omitted, during the navigation of

a vessel, when compared to other data sources, providing a reliable and fraud-resistant source for

classification systems, however, they suffer interference from the conditions of the environment

in which they are used. In this work, a methodology was proposed to perform the underwater

acoustic classification, using signals produced by vessels, using machine learning techniques,

and also considering environmental variables, such as the distance between the hydrophones and

the target vessels. A comparison regarding the performance of the most common convolutional

neural networks was performed using the VGG and ResNet 18 architectures. Comparisons were

also made between the three preprocessing filters commonly present in the literature, the Mel

spectrograms, the Gamma filters, and the constant Q transform, providing a study on the impact

of such variables in the final classification. Due to the scarcity of annotated datasets to study this

problem, an annotated dataset was proposed based on the sound signals of the Ocean Canada

Network initiative. The results obtained reached the accuracy of 94.95% on the proposed dataset

using CQT as the preprocessing filter for a ResNet-based convolutional neural network. The

source codes for reproducing the tests, as well as for obtaining the dataset, are freely and publicly

available for academic purposes.

Keywords: Deep Learning. Sound. Marine Environment. Ship Type. Hydrophones
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1 INTRODUCTION

Illegal fishing represents a serious problem for society in general, affecting not only the marine

life through destructive trawling but also the local economy of coastal areas, which depends

economically on this ecosystem for subsistence. Therefore, the detection and classification of

illegal vessels situated in law-protected areas represent a poignant need for the surveillance and

protection of the coastal ecosystem. Nowadays, there is a large number of applications that

involve maritime classification tasks, such as the identification of underwater archaeological

remains (ORENGO; GARCIA-MOLSOSA, 2019), the inspection of underwater structures for the

offshore industry (XU et al., 2016; CHEN et al., 2019), the surveillance of shorelines (DÄSTNER

et al., 2018), the identification of vessels (CHOI; CHOO; LEE, 2019), as well as applications in

environmental sciences, like counting and classifying the marine life behaviour for biological

research (TERAYAMA et al., 2019). Also worth mentioning are studies relating the acoustic

signals in the sea to environmental pollution, affecting not only the marine life (ERBE et al.,

2019; MERCHANT et al., 2014; ROSSI et al., 2016), but also the human activities in port areas

(NASTASI et al., 2020; MCKENNA et al., 2012; BOCANEGRA et al., 2022). In this context, the

present thesis selected the identification and classification of vessels from underwater acoustic

data as the domain of interest.

Some technologies, such as the Automatic Identification System (AIS), which contain

Global Positioning System (GPS) data, and satellite images, can be applied in the surveillance of

the marine environment. However, these approaches have limitations. For instance, the high cost

and the accurate instrument calibration are still challenges for satellite imagery (DUBOVIK et al.,

2021). GPS signals, on the other hand, can be masked or defrauded to limit the system capabilities

or even to hide illegal activities. In contrast, the acoustic signals emitted by vessels captured

using hydrophones provide a low-cost and fraud-resistant data source to be used in surveillance

tasks, as vessel-emitted acoustic signals are harder to omit and its impact can be perceived in

many underwater environments (NEENAN et al., 2016; FERRAO, 2018; JÉZÉQUEL; BONNEL;

CHAUVAUD, 2021). The effort in this area can also be the initial step toward understanding

how those signals can be analysed, becoming the gateway to understanding of how acoustic

environmental pollution is affecting marine life.

As the classification of underwater acoustic signals gained importance, this task became

unfeasible to be solved by traditional (time-frequency) methods, which were primarily conducted

by humans operators, due to the high complexity of the data. Time-frequency representations,
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such as those based on the Fourier transform or on temporal data segments (CHILDERS;

SKINNER; KEMERAIT, 1977), can be applied in different forms, such as a linear scale (e.g.,

short time Fourier transforms) or a logarithmic scale (e.g., Mel filter banks). Both strategies

produce a two-dimensional time-frequency representation of the signal, which can be used to

analyse the features of the sound. However, the underwater acoustic signal is a mixture of

environmental, biological and human-generated sounds. Therefore, it has a low Signal-to-Noise

Ratio (SNR) and a high degree of variability for the same source (BOASHASH, B., 2003;

GHOSH et al., 1996), raising the difficulty of the recognition task. In order to cope with this

issue, recent studies are mostly based on the application of Deep Learning (DL) methods (YANG,

Haesang et al., 2020b,a,c), which became promising methods for automatic data classification

tasks.

Many DL methods for object detection and classification have been successfully developed

in the past few years for computer vision applications (CHAI et al., 2021). The use case

presented in this thesis allows for the application of these methods to other data domains

which could inherit from the solutions developed in the visual domain. In this context, as

the time-frequency representations are two-dimensional representations of the acoustic signal,

an opportunity arises to apply the DL strategies developed for computer vision for acoustic

analysis. Numerous DL solutions for the acoustic domain are now based on Convolutional

Neural Network (CNN) (RUMELHART; HINTON; WILLIAMS, 1986; LECUN et al., 1990).

Although they can be applied to raw audio, they are often applied to two-dimensional audio

representations, such as spectrograms. The most recent studies have used Visual Geometry Group

(VGG)Net (SIMONYAN; ZISSERMAN, 2015) or ResNet (HE et al., 2016) models as base

algorithms for this development, owing to the models’ high accuracy in complex classification

tasks. Despite the use of time-frequency representations as inputs to CNN being an interesting

approach, its growth depends on the representation used and the model which will receive it. Also,

as the sound generated by the targets in the underwater domain is dependent on the environment,

it is of extreme importance that not only the type of two-dimensional representation matches the

problem, but also its parameters must be optimised for the solution.

The present work describes an investigation of the automated classification of single-

channel underwater acoustic signals of four distinct classes of vessels in marine environments,

using DL applied on time-frequency representations of the sounds. It also presents a study of

different preprocessing filters and an analysis of the results with varying distances from the ships

to the sensors.
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1.1 OBJECTIVE

The objective of this research is to develop a methodology for performing vessel classification

using single-channel underwater acoustic signals while considering environmental variables,

such as the distance between the sensor and the vessel, and comparing the accuracy of the various

types of existing preprocessing. The main contributions of this work can be summarised as

follows:

a) The creation of an open-source pipeline for the classification of vessels from

underwater acoustic signals using Machine Learning1;

b) The comparison of the Adam and Stochastic Gradient Descent (SGD) optimisers

for spectrogram analysis;

c) The comparison of the three different preprocessing filters (CQT, Mel Spectrogram,

and Gammatone);

d) A combination of the CQT, Mel Spectrogram, and Gammatone representations

into a three-channel input signal, generating a more complete input signal to the

network;

e) The analysis of the relation between the distance of the object of interest to the

hydrophone and the accuracy of the various classification methods evaluated in this

work;

f) The proposal of a new open source curated dataset containing underwater acoustic

signals classified into different scenarios based on the distance from the vessel to

the sensor2 ,
3.

1.2 THESIS STRUCTURE

The background knowledge needed to understand the theory behind the problem was presented

in Chapter 2, followed by an extensive review of the literature, including three main different

types of approaches and a summary of the available datasets (see Chapter 3). The gap statement

and motivations behind this work were addressed at Chapter 4, together with the description of

the solution stages. The detailed description of the preliminary experiments, as well as the results

obtained, were reported in Chapter 5. The analysis and discussion of the results were handled in

Chapter 6.
1https://github.com/lucascesarfd/underwater_snd
2https://github.com/lucascesarfd/onc_dataset
3http://ieee-dataport.org/documents/vtuad-vessel-type-underwater-acoustic-data
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The sections that constitute the Chapter 2 and Chapter 3 have been published in

(DOMINGOS et al., 2022b). Summarised versions of the Chapters 4 and 5 were submitted for

submission in (DOMINGOS et al., 2022a).
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2 UNDERWATER ACOUSTICS AND DEEP LEARNING BACKGROUND

This chapter presents a summary of underwater acoustics, classic signal processing methods

and general deep learning algorithms. These constitute the background knowledge needed to

understand and analyse the current techniques for the autonomous classification of underwater

acoustic data in the maritime domain.

2.1 FUNDAMENTALS OF UNDERWATER ACOUSTICS

The acoustic signal produced by a vessel moving in the sea is mainly composed of a broadband

component, which has a continuous spectrum, generated by the propeller and its hydrodynamic

interactions. It is also comprised of a narrow band component, whose spectrum consists of

line components at discrete frequencies, owing to the propulsion system and other mechanical

parts (VAHIDPOUR; RASTEGARNIA; KHALILI, 2015). The automatic classification of

this type of signal is a challenging task as the acoustic signal is also dependent on the vessel’s

speed, the age and state of the propulsion system, the highly variable background noise and the

diversity of sound propagation mechanisms in the ocean. The latter aspect is also a source of

complexity in active sonar applications. As identified in Section 3 below, the characteristics of

underwater sound propagation, however, is largely ignored in most literature concerning machine

learning-based underwater acoustic signal classifiers, even though it is essential for interpreting

the accuracy of the classification results. To provide an appropriate context for this issue, this

section presents a summary of underwater acoustics, mainly based on (KUPERMAN; ROUX,

2007; ABRAHAM, 2019; URICK; AGENCY, 1979).

Sound propagation in the ocean is dependent on the properties of the water column, such

as temperature, salinity and pressure, and effects related to the ocean floor, such as scattering

and reverberation. For a temperature T (measured in Celsius), a depth below the surface z (in

meters) and salinity S (parts per thousand), the sound speed c in the ocean can be represented by

the following function (ABRAHAM, 2019)1:

c = 1449.2 + 4.6T + 0.055T 2 + 1.39(S − 35) + 0.016z. (1)

1N.B., Equation 1 is one possible way of defining the dependency of the speed of sound with oceanographic
variables, other formulations are presented in (LEROY; ROBINSON; GOLDSMITH, 2008).
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Sound rays respect Snell’s law of refraction, which expresses that the rate between the

cosine of the ray angle θ(z), with respect to the horizontal plane, at local sound speed c(z) and

depth z, is constant:

cosθ(z)

c(z)
= constant. (2)

Therefore, a negative sound-speed gradient (e.g. in a thermocline) causes sound rays to

bend downwards; the opposite happens with a positive gradient (e.g. in a deep ocean where

changes in pressure are more significant than temperature changes). In other words, sound bends

toward regions of low sound speed (KUPERMAN; ROUX, 2007). This implies that distinct

sound profiles should be considered for warmer and colder geographic areas, periods of the

day or seasons of the year. Ocean volume also causes attenuation of the sound signal, which is

directly proportional to the squared acoustic frequency.

In more general terms, the influences of oceanographic properties on the sound propagation

paths can be classified into three primary classes: very short range, deep water, and shallow

water propagation (KUPERMAN; ROUX, 2007). Very short range propagation includes the

direct and the surface reflected paths, where the former refers to sound waves that travel without

interacting with the sea surface or bottom; the latter refers to sound waves that are reflected

by the air/sea interface. The interference of these two paths creates a Lloyd mirror pattern

effect (MCMAHON et al., 2012), which makes object detection and classification in shallow

waters, such as in a harbour or port, a challenging task (FERGUSON et al., 2017). Deep water (or

long-range) propagation paths can mostly be characterised by Snell’s law of refraction, apart from

the bottom bounce effect. In this effect, sound rays are reflected by the ocean floor in a process

dependent on the signal frequency and sensitive to seabed characteristics. In shallow waters,

where the depths are up to a few hundred meters from the surface to the ocean bottom, the effects

of surface reflection, bottom bounce and distinct temperature regimes in distinct seasons have to

be taken into account. During the summer period, following Snell’s law, sound rays bend more

toward the bottom than during the winter months. This implies that the bottom bounce effect

is more prominent during the hotter periods of the year and, therefore, the sound propagation

in shallow waters has higher losses in the summer than during the winter. The rough winter

surface conditions have also to be considered, as they generate considerable scattering losses at

high frequencies (achieving 0.1 db/km at 600 Hz and 1 db/km at 6000 Hz) since more energy is

needed to keep the mechanical vibrations in these situations (URICK; AGENCY, 1979).
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Scattering, due to rough boundaries or small obstacles, is another process that causes

loss in the acoustic signal. In contrast to reflection, scattering happens with wavelengths at

the order of the obstacles, causing parts of the acoustic field to be randomised (WEILL, 2014).

Scattering due to rough surfaces cause a frequency-dependent attenuation of the acoustic field,

whereas volume scattering decreases with depth and presents variations at distinct periods of

the day (KUPERMAN; ROUX, 2007), usually due to near-surface bubbles, bubble clouds or

biological obstacles, such as air-filled swim bladders and zooplankton.

Classical signal processing methods, such as cepstral analysis (CHILDERS; SKINNER;

KEMERAIT, 1977), can attenuate some of the effects of reflection interference and scattering

losses, but only at short ranges with a high SNR (FERGUSON et al., 2017). Nevertheless, these

effects represent some of the main challenges for sonar systems and they should be considered in

the evaluation of any underwater acoustic classifier since misclassifications are likely to result if

the confounding effects of temperature, depth and boundary conditions are not taken into account

by the system.

Sound Navigation and Ranging (SONAR) systems

In general terms, a sonar system consists of a sensor, or an array of sensors, converting acoustic

pressure underwater to electrical voltage (ABRAHAM, 2019). The most common example is the

hydrophones, which are essentially transducers or underwater microphones.

Passive sonar systems detect acoustic signals emitted by the objects of interest, such as

ship’s propellers, seismic/volcanic or biological signals, for instance. The application of these

systems assumes that all the information necessary for the detection, classification and tracking

of underwater objects is available in the signal emitted by the objects themselves. Active sonar

systems, on the other hand, have sound projectors that are transducers, converting electrical

voltages to acoustic pressures. These projectors emit acoustic pulses, called transmit waveform,

whose reflections are measured by the hydrophones. In these systems, the information necessary

for achieving the inferential objectives reside in the reflection and scattering that the original

signal suffers upon interacting with objects in the environment. Any sonar application, involving

machine learning processing or not, should take into account the limitations of the sensing

apparatus. Usually, this is measured by accounting for each part of the system, including the

system’s components, the effects of the underwater environment, and the characteristics of

sound or scattering from the target. This accountability is summarised in sonar equations 3 and
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4 (ABRAHAM, 2019), resulting in the SNR of the system. For a source level (SL), a propagation

loss (PL), a noise power level in the processing band (NL) and an array gain (AG) (all measured

in decibels), the basic passive sonar equation is given by:

SNRP assive = SL − PL − NL + AG. (3)

The basic active sonar equation (Equation 4) also takes into account the target strength

(TS), and the propagation losses from the sound projector (PLa) and from the object of interest

(PLb), considering SL as the source level of the sound projector:

SNRActive = SL − PLa + TS − PLb − NL + AG. (4)

Equation 3 and Equation 4 incorporate the main underwater sonar variables including

temperature, depth, salinity, air/sea and bottom/sea interface, rough boundaries and biological

obstacles. Although, most existing research on the application of machine learning methods

for the classification of underwater acoustic data ignore these effects and do not evaluate the

classification tasks concerning the performance of the sonar system in distinct oceanographic

situations. Ignoring these variables limits the use of ML methods in applications that demand a

high level of trust, such as in defence systems or the inspection of underwater built structures,

such as deep-sea mining facilities. In these applications, classic acoustic processing strategies,

which do not involve machine learning algorithms, are still the first-choice methods because

these effects can be explicitly accounted for.

Many DL algorithms use classic acoustic signal processing strategies to preprocess the

sonar data, aiming to extract the most relevant features of the original sound to feed the networks.

The subsequent section will describe some of the most common preprocessing methods found in

the literature.

2.2 MAIN CONCEPTS IN CLASSIC ACOUSTIC PROCESSING METHODS

Acoustic signals are produced by mechanical vibrations propagating in all directions. They

can be captured by transducers and represented as one-dimensional signals that oscillate in

amplitude through time. Besides the many applications that can be developed using the temporal

information of audio signals, some characteristics of this kind of data are best obtained in the

frequency domain. In the particular case of underwater acoustic signal processing, the frequency
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domain is usually more informative (ABRAHAM, 2019). To this end, Fourier transforms (FT)

are used to obtain the frequency content of a time-domain signal (BOASHASH, Boualem, 2016).

The result of an FT on an auto-correlation function is called power spectrum that, informally,

represents how much of the original signal is at a particular frequency.

Features related to amplitude and frequency can be directly analysed from the power

spectrum, but the information on how the frequency varies with time is lost in this representation.

To fill this gap, two-dimensional time-frequency features can be extracted by passing a windowing

function through the time signal and extracting the FT for each window of the original data. This

procedure is called the Short-Time Fourier transform (STFT), and the unified resultant output is

called the spectrogram of the signal. Spectrograms are typically plotted with time on the x-axis,

frequency on the y-axis, and magnitude on the z-axis. They can be thought of as a series of time

segmented FT put in chronological order.

The analysis of the harmonic behaviour of the spectrographic data is also an important

feature for sound analysis in general (TSAI; LIN, 2010; LEE et al., 2009; GOPALAN, 2005), and

can be obtained with the extraction of their cepstrum representation. The cepstrum is the result

of the inverse FT of the signal spectrum logarithm and is used to obtain the periodic structures

in spectra (OPPENHEIM; SCHAFER, 2004). The cepstrum is also commonly understood as

the power spectrum of the logarithm of the power spectrum (ABRAHAM, 2019). As the term

cepstrum is a reversion of the first syllable of the spectrum, operations on cepstra are also known

as quefrency analysis, a semi-reversed spelling of frequency (BOGERT; HEALY; TUKEY,

1963).

Due to the fact that FT is composed of a sum of sinusoidal functions, this representation

is not well localised in time and space, since sine waves are functions with an infinite duration.

To improve the representation of signals that have abrupt changes in time and space domains,

the wavelet transform was introduced. A wavelet is a wave whose oscillation has a finite

duration, which is defined in time and has a zero mean (DONALD et al., 2009). Wavelets

can be represented in many different formats, such as morlet, mexican hat, biorthogonal and

others. Using the concepts of scaling, representing the frequency and duration of the wavelet, and

shifting, representing the time positioning of the wave, this representation can capture both, high

and low-frequency features. The output of a wavelet transform is a matrix whose coefficients

are functions of the scale and time information. Wavelet decomposition proved to be suitable

for analysing signals that contain information at different frequencies and time (TZANETAKIS;
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ESSL; COOK, 2001; ENDELT; COUR-HARBO, 2004; CHUAN; VASANA; ASAITHAMBI,

2012).

The approaches cited above were developed to improve the representation of time series

and add a frequency component to the resulting signals. However, they are generalised to any

one-dimensional signals, not only acoustic ones. Looking to the problem of sound classification,

the logarithm representation of the frequency is preferred over the linear, following the analogy

with the human auditory system (OXENHAM, 2018). This behaviour demands the development

of approaches exclusively dedicated to the acoustic domain. In this context, the present work

focused on the application of three typical methods for spectrogram generation based on non-linear

frequency scales: The Mel Spectrograms, the Gammatone Spectrograms, and the Constant Q

transform.

2.2.1 Mel Spectrograms

The Mel Spectrogram is a representation of the short-term sound power spectrum. Mel’s

scale (STEVENS; VOLKMANN; NEWMAN, 1937) is empirically based on the way humans

perceive sound, on a logarithmic scale. The work conducted by (STEVENS; VOLKMANN;

NEWMAN) consisted in submitting observers to different frequencies of sounds and recording

their perception and sensitivity to the stimulus. Thus, the resulting scale differs from the musical

and frequency scales, as neither is subjective.

There are different mathematical formulations for the conversion between the f in heartz

to m in mels, however one of the most popular was first defined in (O’SHAUGHNESSY, 1987),

as shown in Equation 5.

m = 2595 log10(1 +
f

700
) (5)

A typical practice in the literature is to represent the frequency variations using the

cepstrum of the Mel scale. The coefficients extracted from that cepstrum are called the Mel

Frequency Cepstrum Coefficients (MFCC). The general process to extract the MFCC from the

signal is described in detail in (LOGAN, 2000). Informally, MFCC is obtained by first sampling

the original signal and then extracting the amplitude spectrum of each sample. After this process,

the signal amplitude is converted to a logarithmic scale and the Mel scale. Finally, a Discrete

Cosine Transform (DCT) is taken to obtain the final form of the MFCC.
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One common criticism of the Mel Scale is that the initial experiment was harmed by

methodological bias (GREENWOOD, 1997), as the five observers (two authors and three others)

were not instructed to listen to the notes on ascending and descending orders. However, this

scale remains commonly used in analysis involving speech recognition and music processing,

where human perception is especially relevant, due to its characteristic of emphasising audible

sound on the proper scale. The following section, on the other hand, will address another audio

processing method, which was mathematically based on the human perception of sounds.

2.2.2 Gammatone Spectrograms

The Gammatone filter was first defined as a suitable filter bank capable of representing the shape

of the impulse response function of the human auditory system (JOHANNESMA, 1972). A

gammatone function can be obtained with the mathematical formulation presented on Equation 6.

g(t) = tn−1 exp (−2πbit) cos (2πfi + αi) (6)

where n is the filter order, i is the filter order number (ranging from 1 to the total number

of filters), b is a bandwidth parameter, f is the filter centre frequency, and α is the phase of the

impulse response.

The function defined on Equation 6 was used by (JOHANNESMA) to summarise the

Reverse Correlation (revcor), a representation of the correlation between a sound stimulus on the

human ear and the response of a primary auditory fibre (PATTERSON et al., 1987). The first

element of the Equation 6 represents a gamma function, and the cosine element represents the

tone of the stimulus. This representation has an amplitude characteristic that can predict human

auditory masking data well, and has the minimum-phase characteristic, which (PATTERSON

et al., 1987) argues is a preferred feature for an auditory filter bank.

Gammatone filter-banks facilitate the representation of the human response to the acoustic

signals, as gamma filters are broader on lower frequencies and narrow on higher ones, emphasising

the lower spectrum. The section below describes another approach to sound representation, not

based on human perception but musical scale properties.

2.2.3 Constant Q Transform

The harmonic frequency components of sounds are geometrically spaced, following the same

distance proportion independently of the fundamental frequency. As FT represents a bank of
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sinusoidal filters equally spaced in frequency, this property makes the linear representation of

frequencies, such as the STFT spectrograms, inefficient in properly representing acoustic signals.

Taking the C and D musical notes as an example: on the lower octaves the C0 (16.35 Hz) and D0

(18.35 Hz) are only 2 Hz apart from each other, however, in the higher octaves, C8 (4186 Hz)

and D8 (4699 Hz) have a linear difference of 513 Hz. This points out that the linear spacing

cannot emphasise both octaves on the same representation using fixed frequency distances.

The solution proposed on (BROWN, 1991), the Constant Q Transform (CQT), uses a

constant Q to create a representation, improving the visualisation resolution while providing the

means to solve the problem of fundamental frequency identification, aiming to represent the

human perception of sounds. The CQT, in contrast with the FT, is a bank of geometrically spaced

filters, where, for the k-th filter, central frequencies can be evaluated with the following equation:

fk = f0 × 2
k

b (7)

Where b represents the number of filters per octave. From the Equation 7 is possible to

derive the relation between the distance of two adjacent filters, as shown in Equation 8.

∆k = fk+1 − fk = fk(2
1

b − 1) (8)

The quality factor Q (or constant Q) is then defined as the ratio of frequency to resolution,

as stated by the Equation 9.

Q =
fk

∆k

= (2
1

b − 1)−1 (9)

The properly tunning of the quality factor Q can supply the needed information for acoustic

analysis, with resolution to distinguish adjacent musical notes, where a sound with harmonic

frequency components will produce a constant pattern in the log frequency domain (BROWN,

1991). This representation also increases time resolution towards higher frequencies, resembling

the auditory system and emphasising lower frequencies, which is a preferred characteristic for

underwater acoustic problems where the sounds to be analysed are mostly located on the lower

frequency bands (see Section 2.1).

When applied correctly, time-frequency analysis can yield useful insights into data. It

does this by extracting and emphasising important signal characteristics such as how frequency

components (spectrogram) or harmonics of the frequency components (cepstrogram) change over

time. However, these approaches are nothing more than changing the way the data is represented
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and presented. They do not perform any sort of classification or categorisation of the information

within the data. Traditionally, those higher-level pattern matching tasks were performed by

humans or basic linear or statistical models. However, over the last few years machine learning

in general, and neural networks in particular, have become the dominant way to classify patterns

in noisy data. The following section will cover the basic understanding of deep neural networks.

2.3 AN INTRODUCTION TO DEEP NEURAL NETWORKS

There has been significant recent developments in DL methods, mostly pushed by object detection

and classification in images (LIU; XU; WANG, 2019; HOSSAIN et al., 2019) and visual

question answering (WU et al., 2017). Spectrographic and cepstrographic representations of

acoustic data are analogous to visual images, representing a signal across two dimensions (x, y

spatial dimensions for images and time, frequency for spectrograms). Therefore, to introduce

applications of DL in the classification of sonar data, a brief introduction to the application of

these methods in image classification is in order.

Informally, a CNN (RUMELHART; HINTON; WILLIAMS, 1986; LECUN et al., 1990)

extends the concept of Artificial Neural Network (ANN) adding a set of layers that function as

feature filters (the convolutional layers) that, by enhancing specific aspects of the input, learn the

features to be classified. More specifically, a CNN is usually structured in many stages. Initially,

the input data is processed by a sequence of convolutional layers with activation functions, and

pooling layers. The convolutional layers compute a sum of products, named convolution, with

their input and a set of kernel weights, called receptive fields. This operation is applied at every

spatial location of each element of the input data using several spatial increments called strides.

A bias value is added to the result of this operation at each location, and the final value obtained

is passed through an activation function. Activation layers controls what information should be

reinforced or attenuated to the next neurons based on a simple mathematical operation. Initially,

most computationally expensive functions were used in DL, such as the Sigmoid (mapping

the values to ranges from 0 to 1) or Hyperbolic Tangent (producing a range from -1 to 1).

Nowadays, the Rectified Linear Units (ReLu) offered a significant improvement in training time,

as it is a simple max {0,x} function which does not need expensive calculations to be evaluated.

Improvements to the ReLu function are being used to minimise the impact of the zeroed side of

the function, which harm the gradient descendent for those neurons. The Leaky ReLu is one of

the most commons, as it attributes a small constant to the zeroed side, defined as max {0.1x,x}.
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The results of the activation layer generates the inputs to the next layer as an array called feature

map. Feature maps represent the extracted features from the original input (e.g. edges, points or

blobs, considering images). The Pooling layers are responsible for merging similar features by a

sub-sampling process, which can be based on the mean values of each feature map (representing

an Average Pooling) or based on the maximum values of the feature maps (producing a Max

Pooling).

Usually, the final stage of a CNN is a traditional fully-connected neural network, that

learns class probabilities for the features picked out by the convolutional layers. The learning

process of CNN occurs as an extension of back-propagation in fully-connected neural networks,

which propagates the gradient of an objective function through all the Neural Network (NN)

parameters (weights). This procedure is computed by gradient descent, for which various

optimisation methods exist, such as Stochastic Gradient Descent (SGD) and Adaptive moment

estimation (Adam), amongst others (SUN et al., 2020). SGD, the most common optimiser used

in the literature, is an iterative method that starts randomly and seeks the minimum value in the

input function. Adam, on the other hand, is an extension of the SGD based on the combination

of the Adaptive Gradient Algorithm (AdaGrad) and the Root Mean Square Propagation (RMSP),

claiming to be "straightforward to implement, is computationally efficient, has little memory

requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems

that are large in terms of data and/or parameters" (KINGMA, Diederik P; BA, 2014). Recently,

an important stage on DL architectures became popular: the normalisation layer. Normalisation

aims to transforms the set of available data to a similar scale, aiming to stabilise the gradient

descent step and improve the convergence. Some of the most common approaches are the Batch

Normalisation (which uses the batch information to re-scale the data) and the Layer Normalisation

(which uses the layer/channel information).

Another issue that any work in DL should consider is overfitting, which occurs when the

model fits exactly with its training data but does not generalise well to data outside the training

set (BROWNLEE, 2018). There are numerous strategies to tackle this issue, such as early

stopping, which consists in stop the training before the model incorporates noise; expand the

training set, as more data implies a more accurate model; feature selection, which identifies the

most relevant features to be learned, ignoring redundant ones; ensemble methods, that aggregate

the output of a set of classifiers, selecting the best output by a voting process; and, finally,

regularisation, that, in general, limits the amount of variance in the model by penalising input

parameters with large coefficients. Regularisation methods have received great attention from
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recent research (TIAN; ZHANG, 2022) since they are solely related to the algorithms, and not to

data quality or classifier competitions. One particular regularisation method worth mentioning in

this thesis is Dropout, which ignores randomly chosen neurons, with a certain probability, during

the training phase, so that a reduced network is obtained as a result. This strategy reduces the

possibility of co-dependency among neurons, which is one factor that causes overfitting.

Most DL models for object recognition that exist today are variations of the basic CNN

structure briefly explained above, with a distinct number, type and distribution of convolutional

and pooling layers, or with some extra constraints on the way the data is processed. There are three

most prominent CNN architectures that have a considerable influence on the image classification

area: AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON, 2012); VGG network (SIMONYAN;

ZISSERMAN, 2014); and ResNet (HE et al., 2016).

2.3.1 AlexNet

The AlexNet model (KRIZHEVSKY; SUTSKEVER; HINTON, 2012) was proposed to solve the

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (RUSSAKOVSKY et al., 2015),

a competition for the automatic object detection and classification based on the ImageNet (DENG

et al., 2009) database. The model achieved an accuracy of more than 10% better than the other

state-of-the-art proposals in the competition. The original AlexNet architecture was composed

of eight layers with learnable parameters, comprising five convolutional layers (with kernel sizes

of 11x11, 5x5, 3x3, 3x3, 3x3), with layers 1, 2 and 5 each followed by a Max Polling layer, and

finally three successive fully-connected layers.

One of the major contributions of this model was the introduction of the ReLu function

as the activation layer. Before AlexNet, the most commonly used activation layers were based on

sigmoid functions and tanh functions. ReLu offered a significant improvement in training time

and also minimised the Vanishing Gradient (VG) problem (HOCHREITER et al., 2001). As the

DL networks go deeper (increasing the number of layers), there is a tendency for the value of

gradients in the backpropagation algorithm to decrease. Due to the limits of sigmoid (0 to 1) and

tanh (-1 to 1), the values of the derivatives vary between 0 - 0.25 and 0 - 1, respectively, which

causes the weight updates to be smaller as the error is propagated to the inputs, impacting the

ability of the first layers to learn. The ReLu function does not have the same limitation, since it

has gradient 1 when its input is greater than zero, and 0 otherwise, and so the backpropagation

value does not diminish as it moves through the layers of the network. This finding paved the
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way for other DL applications, which became to be vastly applied to image computing. The

next section will describe one of the improvements which used the AlexNet model findings as a

starting point.

2.3.2 VGG

Improving the idea behind the AlexNet construction, the VGG (SIMONYAN; ZISSERMAN,

2014) was proposed to cope with the need to reduce the number of parameters necessary to

obtain each feature map. The idea behind this architecture is that the features learned with

larger kernel sizes can be reproduced using a combination of smaller kernels, such as the 3x3

reducing the number of parameters to be computed. A reduced set of parameters represent a

faster execution and an improved robustness to overfitting. VGG-based methods can perceive

granular spatial relations on images due their kernel size, the smallest possible size to capture the

four different directions (up, down, left, right). This reduced kernel size also produces a good

trade-off between classification accuracy and hyperparameter complexity.

The VGG model is composed of blocks with the combination of convolutional layers

attached to ReLu, followed by Max Pooling layers, as the feature extraction stage. The

classification stage is composed of fully-connected layers and a softmax activation function. The

most common architectures are the VGG-16 and the VGG-19, where 16 and 19 represents the

number of convolutional layers. The universal approximation theorem (CYBENKO, 1989) states

that a deep enough neural network is capable of approximating any complex function, therefore,

besides the smaller receptive fields, the VGG-based methods were becoming deeper as more

convolutional layers were added to them. However, the vanishing gradient and the accuracy

degradation problems become problematic, as more layers are added to the models. The ResNet

model, described below, addressed this issue.

2.3.3 ResNet

The use of ReLu activation functions greatly improved the robustness of deep learning models

concerning the VG problem, however, DL models were still challenging to train, and the accuracy

of deeper models failed to perform better than shallower networks. ResNet (HE et al., 2016)

addressed this problem by introducing an identity shortcut connection between the convolutional

layers, bypassing one or more layers in a forward pass, defining the residual blocks. These blocks

facilitate the learning ability of the intermediary layers, reducing the VG problem, and penalising
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the ones that could potentially degrade the accuracy (HE et al., 2016). Residual blocks are based

on using a copy of the input data as base elements for the output values, being composed of two

sequential weight layers and one shortcut (identity layer) which connects the input directly to the

output of the block. Sometimes, the weight layers, which can be convolutional, will not have

the same dimensions, so a different type of shortcut is used, such as a convolutional with size

reduction or even padding applied on the input feature.

The residual blocks aim to solve the degradation problem. This states that the accuracy

function increases with network depth only up to a certain number of layers, after which, adding

more layers to the network causes the accuracy to decrease and the loss to increase relative to

the shallower network. This is due to the complexity present in deeper models, which impacts

the learning ability of the back-propagation algorithm. Identity shortcuts affect the updating

of weights in the intermediate layers (those that are in parallel with the identity), generating

adaptability of the learning process only in cases where accuracy is improved. Thus, only the

relevant layers (in terms of accuracy improvement) are considered in the final forward-pass of the

trained network, and those layers that cause the degradation generally converge to zero weights.

The trade-off between model size and performance must be taken into account when

developing a DL solution, aiming to optimise the computational resources while finding an

optimal prediction result. Therefore, the analysis of the results obtained during the experiments

is an indispensable aspect of DL pipelines, as they will conduct the development. The following

section will cover the most commonly used metrics applied to the classification systems evaluation.

2.4 EVALUATION METRICS FOR MACHINE LEARNING DETECTION AND CLASSIFI-

CATION

Results of ML classification procedures in general can be summarised by a confusion matrix,

which is a two-dimensional matrix representing in one of its dimensions, usually its rows, the

correct instances of each class, whereas the other dimension, usually its columns, represents

instances of the predicted class. They can also be normalised to show the predictions in a 0 to 1

range. In a binary classification task, with a distribution of P real positive instances and N real

negative instances, the entries in a confusion matrix represent the number of True Positive (TP),

which are the correct predictions of the positive class, shown in its main diagonal; True Negative

(TN), which are the correct predictions of the negative class; False Positive (FP), representing the

wrong predictions of the positive class; and, False Negative (FN), which are wrong predictions
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of the negative class. The most usual metrics for evaluating a classification task are based on

calculating rates from subsets of these values, such as accuracy (Equation 10), that measures the

overall portion of correct classifications; precision (Equation 11) that is the fraction of correct

positive instances identified by the classifier over all instances identified as positive for each

class; recall, or sensitivity (Equation 12), that measures the fraction of correct positive instances

identified by the classifier over all positive instances for each class; among others (POWERS,

2008; SOKOLOVA; LAPALME, 2009).

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

The F1 score (Equation 13) provides the weighted harmonic mean between precision and

recall. Also important for evaluation purposes is the concept of support, which is the number of

instances of each class in the test dataset. An imbalanced support has to be corrected, e.g. by

sampling or rebalancing, in order to avoid bias in these metrics.

F1-score =
Precision × Recall

Precision + Recall
(13)

The metrics cited above can be extended to multiclass classification tasks by micro-

averaging or macro-averaging. The latter treats all classes equally by calculating the metrics

for each class independently before taking the average, whereas the former averages over the

combined contributions of all classes (SOKOLOVA; LAPALME, 2009). The area under the

precision-recall curve for each class gives another important metric called Average Precision

(AP), whereas the Mean Average Precision (mAP) score is obtained by taking the mean of AP

over all classes.

Sokolova and Lapalme (2009) present an analysis of 24 evaluation metrics for ML

classification tasks, showing the existence of invariance properties across the metrics. These

properties allowed the definition of a taxonomy matching the appropriate metrics with qualities

of the datasets, such as representativeness of class distribution, reliability of class labels, and

the unimodality or multimodality of the classes. Besides that, current literature mostly assumes

accuracy or mAP as the main evaluation metric.
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The theory addressed in this chapter provides the needed background for the basic

understanding and application of DL for underwater acoustics. The next chapter will cover the

available DL solutions in the literature, providing a categorisation according to the most common

approaches.
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3 LITERATURE REVIEW ON UNDERWATER ACOUSTIC CLASSIFICATION

This chapter contains a review of the methods used for classification of underwater acoustic signals.

These methods are separated in three main classes: methods which uses data from frequency and

time-frequency analysis; methods that apply biologically-inspired feature-extraction filters as

pre-processing; and methods that use convolutional Neural Networks alone. Tables summarising

these methods are presented below, relating the datasets used, the highest test result reported

and a short description of the main contribution of each work. Then, a review of the available

datasets will be presented.

3.1 CLASSIFICATION USING FREQUENCY AND TIME-FREQUENCY ANALYSIS

Frequency and time-frequency analysis has been used to pre-process acoustic signals in order to

enhance the most distinctive data features, facilitating the classification process. Table 1 presents

a summary of important methods related to this idea, as described below.

Conventional algorithmic approaches to vessel classification and ranging from hydrophone

data perform well at close range (<180 m) but their performance falls off quickly at longer

ranges. These methods are also inaccurate in the presence of noise (FERGUSON; LO; THU-

RAISINGHAM, 2005). Using cepstrographic inputs to a CNN can overcome the shortcomings

of the conventional approaches. The combination of cepstral filtering and CNNs greatly extends

detection ranges and robustness to noise compared to an algorithmic method, but has slightly

reduced accuracy at short range due to expressive bias (FERGUSON et al., 2017). Analogously,

the performance of a standard CNN in the classification of surface Vehicle Propeller Cavitation

Noise (VPCN) in shallow water has shown to be improved by analysing the amplitude variation

of signal to detect the fundamental frequencies of VPCN (BACH; VU; NGUYEN, 2021). Results

described in (BACH; VU; NGUYEN, 2021) suggest that this method outperforms traditional

classification methods. However, the fundamental frequencies of the target object need to be

known beforehand, and it is assumed that they are independent of environmental conditions,

which may not be true in the general case.

Ship classification from acoustic data is considered a binary classification problem

in (CHOI; CHOO; LEE, 2019) aiming at identifying surface from underwater vessels. As

the audio signals are received on a N-element vertical line array, each element of the original

array is considered to generate two initial representations: the phone-space and the mode-space

Cross-Spectral Density Matrices (CSDM) (pCSDM and mCSDM, respectively). A CSDM is a
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time-frequency representation used to compare different signals, similar to the covariance matrix,

representing the distribution of power across the frequency spectrum over the time. The absolute

values of each CSDM element were used as the source for generating the two other matrices.

Altogether, the generated matrices were used as input to several distinct machine learning models:

Random Forest, Support-Vector Machine (SVM), a Feed-forward NN and a CNN. All algorithms

presented excellent performance, with an error rate below 5%. The training procedure employed

in (CHOI; CHOO; LEE, 2019) used only simulated data considering a source with high SNR

(2dB to 5dB); whereas the validation task was performed on a pair of simulated datasets: the first

had a SNR of 2dB to 5dB; and the second had a SNR of -1dB to 0dB. The results confirm that

the proposed machine learning methods were robust with respect to SNR. However, it is unclear

Table 1 – An overview of ML methods for classification from frequency and time-frequency
analysis. In the ’Metric’ column, ACCY stands for accuracy, AP stands for Average
Precision, and mAP stands for Mean Average Precision.

Reference Preprocessing Network Dataset Metric Main contributions

(FERGUSON
et al., 2017)

Cepstrum and
Cepstrogram

CNN Recorded
boat radiated
noisea

99.78%
AP

The cepstral representation of in-
puts for a NN and an improved
distance estimation from acous-
tic noisy sources.

(CHOI;
CHOO;
LEE, 2019)

pCSDM and
mCSDM

CNN, RF,
SVM and
FNN

Simulated
acoustic
dataa

>95%
ACCY

Comparison between CNN and
FNN.

(MIAO et al.,
2021)

ACT TFFNet Whale FM 92.1%
mAP

The combination of ACT with
the EFP to generate a high reso-
lution time-frequency represen-
tation.

(KIM et al.,
2021)

DWT CNN Underwater
acoustic
signalsa

100%
ACCY

The wavelet transform to obtain
noise robustness and data aug-
mentation as data source. The re-
sults converged with an 8-fold re-
duction in the number of epochs.

(CINELLI;
CHAVES;
LIMA,
2018)

Spectrogram,
delta and
delta-delta
frequencies

Fully-
Connected
and CNN

Brazilian
Marine
dataseta

88.1%
AP

A comparative study of the ac-
curacy of different ML architec-
tures for various input layers.

(VAHIDPOUR;
RASTE-
GARNIA;
KHALILI,
2015)

Image His-
tograms

Fully-
Connected

Five class
acoustic
dataseta

95.13%
ACCYb

The generation of a short-time
Fourier transform-based binary
image as input, improving noise
robustness.

(BACH; VU;
NGUYEN,
2021)

Signal demodu-
lation

CNN ShipsEar 90%
ACCY

An algorithm for detecting the
fundamental frequencies of a sig-
nal according to the amplitude
variation, improving the perfor-
mance of a CNN.

a Dataset is proprietary and unavailable for reproduction.
b Results obtained at 10dB of SNR.
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whether this result would generalise to real sonar data, under various environmental conditions.

Also, results suggest that phone-spaced data inputs are more suitable to ML methods than mode

space, as the former are independent from environmental information.

In the need to improve the time frequency representation of underwater acoustic signals,

a method for sonar classification based on Anisotropic Chirplet Transforms (ACT) and Deep

Learning was proposed (MIAO et al., 2021). Chirps are signals whose frequency increases or

decreases with time. Similar to the relation of Waves to Wavelet (cf. Section 2.2), a chirplet is

the time limited representation of a chirp. They were first proposed to identify small icebergs

fragments using sonar data (MANN; HAYKIN, 1991), as those signals propagate on a radial

chirp waveform. ACT was used in (MIAO et al., 2021) as a pre-processing stage for underwater

acoustic communication dataset and for identifying whale sounds, then it was fed into a deep

CNN, called Time-Frequency Feature Network (TFFNet). Also, an Efficient Feature Pyramid

(EFP) technique was defined by aggregating the context information of the features maps at

different scales, widening the network instead of increasing its depth. This caused more features

to be learned from the input data. The combination of ACT with the EFP method was compared

against Random Forest and SVM, achieving higher accuracy with less resources (memory and

time). This result was attributed to the fact that ACT generated a high resolution time-frequency

representation, providing features that would not be achieved using other known transforms, such

as STFT.

Discrete Wavelet Transform (DWT) was used in the classification of underwater acoustic

signals with noise robustness in a method composed of four stages (KIM et al., 2021): white noise

elimination based on the DWT; an imaging stage, where the spectrogram of the discrete wavelet

coefficients was obtained; a data augmentation method; and the final classification stage. The

data resulting from this four-tier process was, then, used as input to a standard CNN, composed of

four convolutional layers, a dropout and a fully-connected layer. The use of DWT was shown to

be effective at enhancing noise robustness in the system, achieving 99.7% classification accuracy

with a SNR of 0dB, greatly outperforming other 6 different CNN architectures. The reason

behind the improvement on noisy environments was attributed to the application of a threshold,

compromised between the Garrote and hyperbola functions, and also to the DWT coefficients

on the noise elimination stage, impacting directly on the performance of the wavelet denoising.

However, the source of the original data used as input is unclear.

When using spectrograms of hydrophone data a basic four convolutional layer CNN

has been shown to outperform a fully-connected NN with either 0 or 512-neuron hidden
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layers (CINELLI; CHAVES; LIMA, 2018). Furthermore, improved results were observed when

both spectrograms and delta frequency images (i.e. the first difference of signal features, an

approximation of the first derivative) were used as inputs over the use of spectrograms alone or

in combination with delta-delta frequency images (i.e. the second difference of signal features).

However, due to possible overfitting of the system resulting from low databases size, high

inter-class similarity and a large number of model parameters, this finding may have limitations.

This problem could be avoided using data augmentation techniques, but the lack of background

noise information provided limited the application of such techniques in this context.

A fully-connected neural network was applied to recognise ships in hydrophone

data (VAHIDPOUR; RASTEGARNIA; KHALILI, 2015). In order to do this, the origi-

nal signal was treated by traditional image processing methods, mainly a STFT, to generate

a binary image, based on the frequency spectrum of signal segmentation. This process was

shown to improve the analysis of short-time transient sound behaviours, generating a better

representation of the signal to be inputted to the binary image generation. An experiment with

three different SNR (without noise; 5dB and 10dB) compared the accuracy of the proposed model

with a fractal-based method, showing that NN have a better noise robustness for all analysed

scenarios, and also indicating that, for the five class classification problem, the feature extraction

method proposed achieved a high performance recognition with just 11 features. Although the

innovative feature extraction method presented better results, the characteristics and origin of the

database used are not discussed, therefore the results cannot be properly evaluated or repeated.

Research has found that the classification of acoustic signals is improved when the data is

presented in a time-frequency representation, such as a spectrogram or cepstrogram. Moreover,

pre-filtering in the time-frequency domain further improves classification as does the inclusion

of convolutional layers within the classifier model.

3.2 CLASSIFICATION USING BIOLOGICALLY-INSPIRED FEATURE EXTRACTION

FILTERS

Using as analogy the methods by which biological systems filter audio signals, a class of classifiers

has evolved that uses bio-inspired filters as a pre-processing step for detection and classification

(Table 2).

Ship-type classification from hydrophone data using CNNs was investigated in (SHEN

et al., 2020; SHEN; YANG; LI, 2019; SHEN et al., 2018), where an algorithm was proposed
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that used a cochlea model to decompose the acoustic signal into target features. This was

implemented as a convolutional layer with auditory filters that resemble the Gabor Neural

Network Le et al. (2020), which uses Gabor filters to assist the detection of mine-like objects.

The original (non-annotated) data used in this study is freely available at Ocean Networks

Canada (ONC)1. The results showed that the proposed "auditory-inspired CNN" resulted in a

1https://www.oceannetworks.ca/

Table 2 – An overview of ML methods for classification using Biologically-Inspired filtering
algorithms. In the ’Metric’ column, ACCY stands for accuracy, and AP stands for
Average Precision.

Reference Preprocessing Network Dataset Metric Main contributions

(SHEN
et al., 2020;
SHEN;
YANG;
LI, 2019;
SHEN et al.,
2018)

Cochlea model Auditory In-
spired CNN

Ocean
Network
Canada
signalsa

87.2%
ACCY

The use of Gabor filter layers in-
spired on the a Cochlea model.

(IRFAN et
al., 2021)

Cepstros, Mel
spectrograms,
MFCC, CQT,
GFCC and
Wavelets

SCAE DeepShip 77.53%
ACCY

The proposal of a new open
source dataset and the compari-
son of various preprocessings.

(WANG, D.
et al., 2018)

Mel-filter bank Inception,
Xception, VGG
and Densenet

Whale FM 84.40%
ACCY

The accuracy comparison of tra-
ditional methods and CNNs for
the same scenarios.

(KHISHE;
MOHAM-
MADI,
2019)

MFCC Fully-
Connected

Sonar
datasetb

97.12%
ACCY

The accuracy comparison of
meta-heuristic algorithms and
the use of fully connected NN.

(WANG, X.
et al., 2019)

GFCC and
MFCC

Fully-
Connected

Six class
datasetb

94.3%
ACCY

A combination of MFCC and
GFCC was used as feature ex-
traction showing time perfor-
mance improvement.

(SUN;
WANG,
2022)

STFT, Mel-log
and MFCCs

ResNet and
DenseNet

ShipsEar 97.49% The classification of synthetic
mixed multitarget signals using
CNNs.

(WANG, D.
et al., 2019)

Mel-log, delta,
and delta-delta

ResNext101 Shallow wa-
ter Datab

85.00% Direction-of-arrival prediction
based on acoustic signals.

(CHEN, L.
et al., 2022)

MFCC, CQT,
Gammatone,
and Log-Mel

CNN+DNN Hydrophone
datasetsb

89.9% The generation of a pipeline
with the combination of the pre-
processed features for acoustic
target classification.

(HAN et al.,
2022)

Mel-log,
MFCC, chro-
matogram,
spectral con-
trast, and
Tonnetz

CNN+LSTM ShipsEar 92.17% The proposal of a joint neural
network composed of CNN and
LSTM, applied on a combina-
tion of the preprocessing strate-
gies.

a Dataset uses public data with non-public preprocessing techniques.
b Dataset is proprietary and unavailable for reproduction.
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high accuracy (87.2%), outperforming a standard CNN (83.2%), a stack of autoencoders (CAO

et al., 2016) (81.4%) and various traditional object recognition algorithms, such as a combination

of wavelet transform with Principal component analysis (PCA) (SHI; XU, 2013) (74.6%) and

a SVM (YANG, H. et al., 2016) (68.2%). However, Shen et al. (2020) do not report the exact

devices that were used, the precise period of data collection, or the labelled data used. Therefore,

even though the original raw data is freely available, it is impossible to reproduce the results

reported in that work.

The work proposed in Irfan et al. (2021) fills the gaps opened by the work of Shen

et al. (2020), involving the creation of an open-source reference dataset. The final set, called

DeepShip, is dedicated to classifying vessel types using underwater acoustic signals, and consists

of approximately 47 hours of recordings from 265 different vessels belonging to four classes:

Cargo, Passenger Ship, Tanker and Tug. For classification, the authors proposed a Separable

Convolution Autoencoder (SCAE). Using six different signal preprocessing techniques (Cepstros,

Mel spectrograms, MFCC, CQT, Gammatone Frequency Cepstral Coefficients (GFCC) and

Wavelets), this model proved to have a better accuracy in the classification task, achieving

77.53% for CQT filter, when compared to other traditional models, such as CNN (76.35%), SVM

(72.24%) and the K-Nearest Neighbors algorithm (KNN) (62.71%).

The classification of large-scale acoustic signals was evaluated in (WANG, D. et al.,

2018) with a comparison among four popular CNN models (VGGnet, Inception, Xception, and

DenseNet) and a classical baseline approach. The main aim of this comparison was to evaluate

the improvement of using CNNs instead of classical acoustic classification methods. Mel-filter

bank features were used to extract features from the signals. As the Mel scale emphasises

lower frequencies over the higher ones (approximating the human auditory perceptions), using

Mel-filter banks resulted in more lower frequency filters than filters on higher frequencies. This

work showed that the logarithmic encoding of frequencies produced results 10 percentage points

higher than linear encoding, which is further evidence that the use of preset pre-processing stages

can result in improvements over random and generic starting points for a NN.

As CNNs can be understood as a combination of feature extraction layers (convolutions)

and a classifier (the final densely connected layers), a few other recent contributions investigate

the use of a single fully-connected neural network to classify passive sonar data, receiving the

extracted features from bio-inspired methods as inputs. For instance, a fully-connected neural

network was used in (KHISHE; MOHAMMADI, 2019) to classify data from two hydrophones

picking out signals from three distinct propellers running on on a closed-water circuit cavitation
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tunnel. The raw data from the hydrophones were pre-processed into a feature vector formed by

the discrete cosine transforms of the MFCC. The classifier used meta-heuristic algorithms for

optimising the weights and biases of the NN, aiming to avoid local minima, while accelerating

learning convergence. The results presented were only compared with other meta-heuristic

algorithms training the same neural network, but not against state-of-the-art deep learning

methods. The data used is not available to reassess these results, making reproduction, or even

comparison with the performance of modern classification systems, impossible. Nevertheless,

the use of meta-heuristics (usually inspired by insect behaviours) for optimising the NN training

opens an avenue for investigating the application of these methods to finding the optimal structure

of a NN, or for fitting the hyperparameters of more complex architectures (KHISHE; MOSAVI;

MORIDI, 2016).

MFCC can be used as input to fully-connected neural networks and directed to the problem

of underwater acoustic recognition of ship types, marine mammals and underwater background

noise with weak targets (WANG, X. et al., 2019). The method proposed in (WANG, X. et al.,

2019) used a combination of GFCC and mode decomposition on the MFCC to extract features

from the signal, that were then input to the neural network. Results obtained with this method

suggest that by not using a CNN to learn the features saves computing time, as no redundant

features are generated. However, comparisons were only executed against variations of the

author’s own algorithm, and not with respect to state-of-the-art CNNs.

The work proposed in Sun and Wang (2022) has investigated the comparison of various

pre-processing methods on the original audio signal, including magnitude STFT spectrum,

complex-valued STFT spectrum, Mel-log spectrum, and MFCCs, as inputs to real-valued and

complex-valued ResNet and DenseNet CNNs. The results obtained using preprocessing filters

were considerably better than the baseline approach where a CNN was directly applied to classify

the raw audio signal. Similarly, Log-mel spectrograms, delta, and delta-delta features were also

used as acoustic filters in a ship detection task using a CNN, where high accuracy in the detection

and localisation of vessels was reported (WANG, D. et al., 2019).

Recent work has been driven by the advantage of using preprocessing filters to extract

optimised features from the audio, using also stacks of multiple filters as inputs of the CNN

models (CHEN, L. et al., 2022; HAN et al., 2022). The rationale behind this approach is to take

advantage of the strengths of each method, feeding the network with different representations of

the sound. For instance, a joint learning framework was developed to address the underwater

acoustic target classification using MFCC, CQT, Gammatone, and Log-Mel feature extraction
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methods to feed a CNN-based architecture (CHEN, L. et al., 2022). The comparison of the

results obtained with individual approaches and their combination showed that superior results

could be reached with the latter. Another relevant work uses a fusion of the Mel-spectrogram,

MFCC, chromatogram, spectral contrast, and tonnetz filters, resulting in a one-dimensional

representation, to evaluate the performance of a CNN model for the classification of underwater

acoustic signals (HAN et al., 2022).

Much of the work presented in this section was developed following a problem solving

strategy, whose focus is on error minimisation under specific conditions, when the real effort

should instead be employed on a problem understanding approach, where the background

knowledge about the interrelation between environment conditions, SNR, and machine learning

tools dictates the future development of suitable combinations of filters with DL models.

Nevertheless, in general, the use of bio-inspired pre-processing steps in ML classification

procedure has shown to reduce the complexity of the ML training procedure, accelerating the

learning process while avoiding local maxima.

3.3 CLASSIFICATION USING ONLY CNNS

It is common to have a data preprocessing stage before applying acoustic signals into a DL model,

aiming to extract the relevant features of the signal and improve its representation. Generally, in

a time series classification problem, the strategy is to first transform the data and represent it as a

spectrogram or cepstrogram, then obtain two-dimensional features by applying distance-based or

feature-based methods (XING; PEI; KEOGH, 2010). However, considering that the DL models

as universal functions approximators, the optimised representation of the signal can be also

learned from its original time-domain data. Therefore, the use of unprocessed audio signals to

feed convolutional kernels became also an option to tackle classification in the acoustic domain,

as summarised in Table 3 and discussed below.

An end-to-end NN called Auditory Perception-inspired Deep Convolutional Neural

Network (ADCNN) (YANG, Honghui et al., 2019) was defined for underwater acoustic target

recognition. It used a bank of multi-scale deep convolutional filters as the first stage of the

model to decompose the raw time domain signal into an set of distinct frequency domain signals.

Each convolutional filter was followed by a max-pooling layer and several fully-connected layers.

After this, a fusion stage was defined in order to unify those components into a more informative

representation, where the main distinguishing features were prominent. The data flow then goes
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through a decision layer, which produces the classification result. This process can be understood

as an adaptive strategy where the sub-networks learn, directly from the input data, how to extract

the intrinsic characteristics of the acoustic signal. The ADCNN model was able to execute

each stage of the data-processing and classification pipeline, starting from noise decomposition,

passing through feature extraction and finishing with the classification output.

Processing the original raw data, Hu et al. (2018) proposed a method for identification

of underwater noise data based on CNN and Extreme Learning Machine (ELM) (HUANG;

ZHU; SIEW, 2006), which, typically, provides good generalisation performance when compared

with the densely connected NN for classification. Instead of using a classical filter as input

features generator, the work proposed the extraction of advanced signal features using multi-layer

convolutions. Additionally, by removing the final fully connected layer of the CNN and attaching

a ELM as the classifier, the model was able to achieve 93.04% recognition rate on a dataset

of civil ships, representing an improvement of, at least, 6.79% when compared with other

approaches that used classical features as inputs and fully connected layers as classifiers. The

final analysis showed that the features generated by the one-dimensional convolutional layers

acted as band-pass filters, similarly to the ADCNN model described previously.

Similarly, a CNN model, called Underwater Acoustic Target Classification (UATC)

DenseNet (DOAN; HUYNH-THE; KIM, 2020), was designed to classify underwater acoustic

Table 3 – An overview of methods for classification using convolutional filters alone. In the
’Metric’ column, ACCY stands for accuracy.

Reference Network Dataset Metric Main contributions

(YANG,
Honghui et al.,
2019)

Auditory Deep
CNN

Ocean Network
Canada signalsa

81.96%
ACCY

The use of a bank of multi-scale deep
convolutional filters as a first processing
stage, making possible the creation of
an end-to-end NN.

(HU et al.,
2018)

CNN + ELM Civil Shipb 93.04%
ACCY

The substitution of the final fully con-
nected layer of a CNN for an ELM clas-
sifier, improving the generalisation of
the model.

(DOAN;
HUYNH-THE;
KIM, 2020)

UATC-
DenseNet

Real-world pas-
sive sonar datab

98.85%
ACCY

The analysis of the use of a number
of convolutional blocks and layers, and
different layer configurations and input
features.

(TIAN et al.,
2021)

MSRDN Ocean Network
Canada signalsa

83.15%
ACCY

The development of a deep residual net-
work using the soft-thresholding pro-
posed in (ZHAO et al., 2020) and the
convolution kernel proposed in (HAN-
NUN et al., 2019).

a Dataset uses public data with non-public preprocessing techniques.
b Dataset is proprietary and unavailable for reproduction.
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targets from raw audio signals. This model is composed of a deep CNN with dense architecture,

that was trained to recognise 12 classes of signals. The dataset used was labelled by a sonar expert,

containing 11 different classes of sounds and one class corresponding to the ambient sound.

The impact on the final model accuracy was investigated by tuning the number of convolutional

filters, the depth (number of layers) of the neural network model, the different layer configuration

and the different input features. The results showed that a particular model architecture (with

6 convolutional filters with a kernel size of 1x15) performed better when compared to various

other models. The final model used the original sound data as input, without pre-processing

layers or filters, and outperformed other classical methods, such as CNN-ELM (HU et al.,

2018), ResNet18 (HE et al., 2016) and SqueezeNet (IANDOLA et al., 2016), by approximately

0.9%-4.6% at 0-dB SNR. The authors claimed that this performance improvement was due to the

fact that the UATC-DenseNet optimises the use of features represented in multiple layers by an

appropriate use of skip-connections (an argument that resembles the justification for the success

of ResNet, cf. Section 2.3). Moreover, this work pointed to an important future direction that

this type of research should take, which is the identification of topologies and parameters that are

more appropriate for this kind of classification problem.

A Multiscale Residual Deep Neural Network (MSRDN) (inspired by (ZHAO et al.,

2020)) was developed in (TIAN et al., 2021) to classify passive underwater acoustic signals

from modelling the original signal waveform directly. The aim of using unprocessed original

signal in this work was to avoid the loss of the waveform fine structure when converting it to

time-frequency domain and to reduce the dependency of the classification task on the window

size of FT and the hop length of the FT window. Tests using ONC2 public dataset have shown

that MSRDN outperformed other DL methods whose inputs were based on time-frequency

representations.

The gain in the automatic classification of raw audio signal relies on the possibility of

extracting information without imposing any a priori hypothesis on the nature of the object to

be identified and the medium in which it is immersed. This idea was explored two decades

ago, and led to an early US patent (CHAKRABORTY et al., 2002). In this work, a system that

combines an unsupervised Self-Organised Mapping (SOM) network (KOHONEN, 1982) with

Learning Vector Quantisation (LVQ) (SATO; YAMADA, 1996) was proposed to provide a high

performance in classifying the roughness of the ocean floor from raw sonar data. This line of

research, implemented in modern state-of-the-art hardware, which facilitates embedded parallel

2https://oceannetworks.ca
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processing, could lead to deeper, more instances of LVQ networks and finer LVQs, possibly

leading to more detailed representations of the seabed.

Virtually every efficient convolutional neural network in use today was first developed for

image processing tasks. Therefore, most applications of CNNs to acoustic signals are based on

adapting the methods initially developed for images. The development of dedicated acoustic

feature-extraction strategies (using convolutional layers alone) to process audio signals is still an

issue to be explored in this field.

The review of the DL applications presented on the Sections 3.1, 3.2, and 3.3, pointed

out to some gaps in the available literature. There is insufficient concern about the environmental

issues related to acoustic propagation, as the majority of the architectures presented here were

based on image classifiers adaptation to the acoustic domain. Besides this approach presenting

promising results, there is a need to consider specific acoustic processing issues. One of the steps

taken in this direction was the application of time-frequency and biologically-inspired filters,

which are gaining the field attention. However, these approaches are applied to a problem-solving

strategy, commonly without proper application or tuning of parameters. The present work

aims to solve some of the gaps presented above by stabilising a method for the processing filter

parameters optimisation and the distance between target and sensor consideration as an important

environmental factor in the conduction of the tests.

A significant portion of the works described in the previous sections was developed in

proprietary datasets, unavailable for reproduction. The subsequent section will summarise some

available datasets that can be used for underwater acoustic classification solutions development.

3.4 AVAILABLE DATASETS

CNNs have proved to be an important tool for automatic data classification. However, they are

data hungry, as a large amount of labelled data points is needed to properly train and validate

the models. This is a critical issue in the classification of underwater acoustic data, since most

datasets are not publicly available, owing to the financial and technical complexity in obtaining

such data and also to their potential defence-sensitive information. Therefore, much work in

this area is conducted using synthetic data only (DENOS et al., 2017), or on a limited set of

real data augmented with semi-synthetic examples for training (HUO; WU; LI, 2020; BERG;

HJELMERVIK, 2018; LE et al., 2020). There are, however, a few datasets commonly used in the

literature, that are summarised in Table 4.
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One common criticism of the synthetic or augmented datasets usage in machine learning

is that these might be created to fit the model rather than the other way around, thus generating a

biased process. Therefore, there is a need for a complete dataset that comprises the information

needed for this research area. In this way, the present work proposes a dataset for the vessel-type

classification using underwater acoustic signals, which will be publicly available, containing the

Table 4 – A summary of some datasets available.

Dataset Description

Ocean Network
Canada (HEESEMANN
et al., 2014)

This (non-annotated) dataset is curated by the University of Victoria,
Canada and contains a continuous monitoring of the west and
east coasts of Canada and the Arctic. It is available from https:

//oceannetworks.ca

DeepShip: An Underwa-
ter Acoustic Benchmark
Dataset (IRFAN et al.,
2021)

DeepShip is a benchmark dataset for underwater ship classification
which consists of 47 hours and 4 min of recordings of 265 different
ships belonging to four different classes (background sound was
not available). This dataset is available for download at https:

//github.com/irfankamboh/DeepShip

ShipsEar: An under-
water vessel noise
database (SANTOS-
DOMÍNGUEZ et al.,
2016)

ShipsEar is a database containing underwater recordings of ship
and boat sounds, which has 90 recordings of 11 different vessel
types. It also has some useful information about the recordings,
such as channel depth, wind, distance, location, to cite a few. This
dataset is available for download at http://atlanttic.uvigo.

es/underwaternoise/

Five-element acoustic
dataset (PERRINE et al.,
2009)

The main purpose of this dataset is to facilitate research on Doppler
correction techniques for underwater acoustic transmissions. The
dataset is composed of 360 communication packets with dura-
tion of 0.5 sec generated by a transceiver and captured by 5 hy-
drophones at nine different positions, and is available for down-
load at http://users.ece.utexas.edu/~bevans/projects/

underwater/datasets/

Fish classification with
Dual-Frequency Iden-
tification Sonar (DID-
SON) (MCCANN et al.,
2018)

Fishery acoustic observation data was collected using Dual-
Frequency Identification Sonar (DIDSON) with the purpose of
classifying fish species. From 100 hours of data, 524 clips were
extracted with eight species labelled. The dataset is available for
download at https://osf.io/sxek6/

Passive sonar spectrogram
images derived from
time-series (LAMPERT;
O’KEEFE, 2013)

The main purpose of this dataset is to facilitate solutions for the
problem of detecting tracks in a spectrogram. It contains 4142
spectrograms generated from synthetic and also real small-boat data.
The dataset is available for download at https://sites.google.

com/site/tomalampert/data-sets?authuser=0

MDT
dataset (VALDENEGRO-
TORO; PRECIADO-
GRĲALVA; WEHBE,
2021)

This dataset was obtained from a forward-looking sonar (ARIS
Explorer 300) placed in a water tank in which a rotating turntable
was used to allow various poses for the objects observed. The MDT
dataset contains 2471 images with 12 classes of object, including
bottle, pipe, platform and propeller and it is available from https://

github.com/mvaldenegro/marine-debris-fls-datasets
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acoustic data and the physical environment variables that can impact the signal representation.

The next chapter will describe the development of the proposed dataset and the pipeline used in

the proposal of a method to approach the underwater acoustic classification problem using DL.
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4 A VESSEL-TYPE CLASSIFICATION METHOD

Underwater acoustic classification is a challenging task, as the sound propagation in the water

has a complex behaviour and demands the consideration of various environmental features.

As DL gained attention showing the potential to solve problems unfeasible by humans alone,

their application in this area is increasing and presenting promising results. Besides that, this

advance is still in the early stages and needs more attention on tools, methodologies, and datasets

development.

This chapter will present the gap found in the literature that this work aims to fulfil and

the motivation behind this objective. Also, the development steps conducted in this way will be

described, focusing on three main stages: the initial approach involving the usage of a variation of

the most common DL architecture found in the literature, the VGG, applied to one of the existing

datasets, aiming to establish a baseline to be used as the base on the subsequent developments;

the formulation and proposal of a new annotated dataset, which seeks to fill the gaps stated on

the Chapter 3; and the development of a complete method, starting from the baseline, to the

development of an underwater acoustic classification approach, considering the distance from

target to sensor as a significant factor, and optimising the preprocessing of the audio signals.

4.1 GAP STATEMENT

There is an absence of works in the literature that use environmental variables as elements to be

considered in the classification of vessels using underwater sound signals. On the other hand, a

visible increase in works involving the application of different preprocessing could be noticed.

The objective of this work is to establish a methodology to perform the classification of vessels

using single-channel underwater acoustic signals, considering environmental factors, such as the

distance from the sensor to the vessel, and comparing, in terms of accuracy, the main types of

existing preprocessing.

4.2 MOTIVATION

In recent years, computer vision has pushed forward the field of DL to solve tasks such as object

classification and detection. The area of sound and acoustic processing benefited from such

advances, adapting these techniques to solve similar problems applied to the one-dimensional

sound signal. Despite that, there are intrinsic characteristics of the acoustic signals that were not
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considered, and these need to be better explored and understood. As the audio signal is naturally

different from the visual stimulus, the development of dedicated acoustic Machine Learning

models can have a beneficial impact on the classification of such signals.

In the underwater domain, the task of classification has increased in complexity, mainly

because of the behaviour of the sound propagation profile, which is influenced by the height of the

water column and the variation of physical characteristics, caused by the seasonal changes of the

medium and external influences of the environment. The combination of physical characteristics

with the audio signal on the classification task can pave the way for understanding the correlation

between them. This approach has not yet been properly explored in the current scientific scenario,

and the impact of this on classification accuracy needs to be understood to improve such methods.

The use of bio-inspired algorithms and time-frequency representations to preprocess

the acoustic signal claims to contribute to the feature extraction stage of the deep learning

approaches, facilitating the convergence and improving the classification accuracy. Nevertheless,

this statement cannot be validated without performance comparisons between the distinct

approaches presented in the literature. To achieve valid results, this task needs to be performed

using the same database as comparison and applying reliable metrics, which consider not only

the prediction rates but the number of class occurrences as well.

When classifying moving targets, it is vital to understand how the variation of the distance

from the target to the sensor is influencing the accuracy of the classification, as the attenuation of

the original sound by the medium can directly impact the received signal power. As the quality

of Machine Learning models is heavily based on the data used for the training and validation

steps, there is a need for an appropriate annotated dataset composed of the audio signals and the

distance information. This is another important question that remains unexplored, as there is

no publicly annotated data available in the literature to use as a starting point for that kind of

research.

Machine Learning has historically proven to be an adequate strategy to solving pattern

recognition problems, and, given the background presented on the Section 3, there is a long

way to go to consider all the implications involved in classifying underwater acoustic signals.

Given the unexplored points mentioned on this section, a end-to-end approach that classifies

the acoustic data and has well-defined specifications, regarding the positioning of sensors on

the underwater domain, is only achievable with the understanding of, at least, three main topics:

the variation of the distance from sensor, the comparison of different acoustic data processing
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approaches, and the comparison of the available ML architectures. The proposed pipeline, that

aims to fulfil the topics stated above, is presented below.

4.3 DEVELOPMENT STEPS FOR UNDERWATER ACOUSTIC CLASSIFICATION

The implementation of this work focuses on three main stages:

a) The development of a baseline machine learning strategy to classify vessel-type

underwater acoustic data, using an available dataset present on the literature;

b) The development of a new dataset, containing the acoustic signals, the environmental

features, and the information of distance between target and sensor structured into

different scenarios;

c) The study of the impact of the new variables, contained at the proposed dataset, on

the final accuracy, comparing two distinct models with three different preprocessing

filters.

The next sections will cover each one of the stages addressed in this work to solve the

stated problems.

4.3.1 Baseline development for vessel-type classification with existing datasets

Most works cited in the literature used proprietary datasets unavailable for reproduction or have

private machine learning source codes. In this work, the objective was not re-implement the

current models, as they can introduce unexpected behaviour, but propose a new method to address

the problem of underwater acoustic classification. With that in mind, this development stage

focused on a baseline development to use as a starting point for the subsequent steps, using a

publicly available dataset.

This stage proposed to evaluate the performance of three different preprocessing methods

used as inputs to a VGG-based CNN. The chosen dataset was the DeepShip (IRFAN et al.,

2021) with the addition of background noise recordings for a baseline. The DeepShip dataset

is composed of data from four commercial ship classes: oil tanker, tug, passenger ship and

cargo ship. Those recordings are divided into 613 files, which vary from about 6 seconds to

1530 seconds. Only the identification of a single vessel within a range of 2 kilometres from the

hydrophone was used to generate the data.

Besides all the files contained in the dataset, the original set does not have information

about background sound. The data included on the original set, instead, was downloaded from
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the internet from various websites. In this work, those signals were replaced by ones generated

using the same source as the original vessel data: the ONC initiative. The background sound

used was generated considering the absence of vessels within the range of 2 kilometres from the

hydrophone, using the AIS data as reference for vessel identification, and was captured during the

deployment from 24 June 2017 to 03 November 2017. To maintain the same length as the other

four classes of the original DeepShip dataset, only the first 12 hours of recording were considered.

Therefore, the final dataset is composed of five classes (Cargo, Passenger Ship, Tanker, Tug and

Background Sound) and has a total length of, approximately, 59 hours. The final dataset was

preprocessed to have a sample rate of 32000 and 1-second segments, padding with zeros when

the size was smaller than needed.

This baseline development focused on the application of three preprocessing filters

commonly present in the literature and also applied in the (IRFAN et al., 2021) work. The

hyperparameters chosen to generate such representations were based on typical values found

in the other works involving acoustic preprocessing. The first processing method was the Mel

Spectrogram, which chosen window had 1024 samples, with a hop length of 512, resulting in

64 frequency bins over 63 time intervals per data segment. The second method was the CQT,

chosen mainly for its characteristic of emphasising lower frequencies, which are predominant in

vessel sounds. The parameters used to generate such representation were a hop length of 512

samples (the same period as the Mel spectrogram), producing signals with a size of 64x63, with

frequencies starting at 32.7 Hz (a C1 on a musical scale) using 12 bins per octave. Third, a

Gammatone Spectrogram was used for comparison, mainly due to its characteristic of mimicking

the human auditory system. To match the same resultant spectrogram shape obtained with the

other preprocessing filters, the parameters chosen were windows of 1024 samples with a hop

length of 512 and 64 frequency bins, starting from 20Hz. The three preprocessing methods used

the Hann function as the windowing method, as it has a low aliasing effect. This set of parameters

(see summary at Table 5) is referenced in this work as Version 1 parameters. Also, sample images

representing an audio signal processed by the three filters cited above were shown at Figure 1.

The CNN used in this preliminary development is based on VGGNet with a reduced

number of convolution layers and modifications to match the input signal. Four feature extraction

convolutional layers were used, with the kernel size of 3x3 and a ReLu activation layer. To

downscale the image by a factor of 2, emphasising the most activated presence of a feature,

a Max Pooling layer was used. Additionally, a Fully Connected layer was used to generate

the classification weights, which finally passed through a Softmax function to generate the
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Figure 1 – Examples of visual representation for the three preprocessing filters: Mel
Spectrogram, Gammatonegram and CQT.

Parameter Mel Gamma CQT

Hop Length 512 512 512
Window hann hann hann
N° of bins 64 64 64
Min. Freq. 0 20 32.7
Max. Freq. Auto Auto Auto
Bins p. Oct. – – 12
Out. Length 64x63 64x63 64x63

Table 5 – Summary of the Version 1 set of parameters, used on the baseline preprocessing
generation.

classification logits. The model was trained with batches of 25 images and a learning rate of

0.001, during 40 epochs with the ADAM optimiser. The loss function used was the Categorical

Cross-Entropy loss. The architecture is shown in Figure 2.

Figure 2 – The baseline VGG-based model architecture.

The results obtained on this stage will be described at Chapter 5.

Besides the development of the baseline focused no the DeepShip dataset, this source of

audio signals did not contained the environmental variables needed to address the classification
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problem. To include the environmental variables and provides a new public dataset, the subsequent

stage of the work focused on the generation of an annotated underwater acoustic dataset.

4.3.2 Generation of a dataset of underwater acoustic signals

The data used in this work consists of signals obtained from the ONC initiative1, captured during

the deployment at the Strait of Georgia, Canada (see Figure 3), from June 24 to November 3,

2017. An icListen AF Hydrophone, located 147 meters below sea level, was used to obtain the

acoustic signals. In addition, the positional information about the vessels was obtained using the

data from the AIS. The Conductivity Temperature and Depth (CTD) recorder used to capture the

environmental signals was the Sea-Bird SBE 16plus SEACAT Recorder, a high accuracy recorder

designed for fixed-side deployments. Figure 4 contains a picture of each one of the devices.

Figure 3 – Location of the Hydrophone (in red), at Strait of Georgia, Canada.

The first part of the annotation process focused on the translation and filtering of the AIS

signals. These signals contain position, identification, speed, course, and other information about

active ships in maritime traffic. Some of the information contained in AIS is not necessary for

vessel classification tasks, only messages related to position report, static and voyage related

data, and static data report were used. Duplicated messages, and messages that did not have

positional arguments, were filtered out and ignored in this work. The vessel’s class was then

inferred from the type of ship and cargo fields of the AIS messages, generating four categories:

1https://www.oceannetworks.ca/
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Figure 4 – The icListen AF Hydrophone (BORNHÖFT, 2022) on the left side of the figure and
the Sea-Bird SBE 16plus SEACAT Recorder (ELECTRONICS, 2022) on the right
side of the figure.

Tug, Passengership, Cargo, and Tanker. Using the positional coordinates, a geodesic distance

calculation was performed to estimate the distance from the vessels in the area of interest to

the hydrophone. As the update rate of AIS data is related to the vessel’s size, cargo, velocity,

etc., there are intervals where gaps appear in the AIS reports. It was deemed safe to linearly

interpolate between these sparse data points to provide greater resolution of the vessel’s distance

to the hydrophone.

Different subsets of data were generated from the original data considering the distance

from the vessel to the hydrophone picking up the vessel’s sound. These subsets, or scenarios,

were created considering inclusion and exclusion radii. The inclusion radius is defined as the

radial distance where only one vessel is present at a specific moment, whereas the exclusion

radius is the region in which there is no vessel within a fixed radial distance. To isolate a single

vessel as much as possible, scenarios were generated as illustrated in Figure 5, where a vessel is

within the inclusion radius while no other vessels are within the wider exclusion radius.

Exclusion Radius

Inclusion Radius

Hydrophone

Figure 5 – Diagram representing a scenario.
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These scenarios facilitate the analysis of the classification accuracy concerning the

distance between the object of interest and the sensor. As the problem of vessel classification

using machine learning depends on the quality of the input data, it was expected that the sound

emitted by distant sources would have a lower SNR and, thus, lower classification accuracy. The

three scenarios considered in this work were created based on the available data: the first scenario

has an inclusion radius of 2km and an exclusion radius of 3km; the second is defined within the

interval of 3km and 4km between inclusion and exclusion radius; the third scenario is defined

within the interval between 4km and 6km. Table 6 summarises the scenarios descriptions.

The application of the three scenarios combined into a more extensive dataset can also be

explored, as each audio segment was placed into a single scenario, thus, there is no repeated

data in the dataset. The three scenarios combination produces a dataset that ignores the distance

from target to sensor, serving as a baseline for comparing the results obtained from the separated

versions.

Scenario Inclusion Radius (km) Exclusion Radius (km)

First 2 4
Second 3 5
Third 4 6

Table 6 – The different scenarios considered for the dataset generation.

The next stage of the dataset formulation was the combination of every AIS instance,

defined as the time period that matches a specific scenario, with the acoustic data and with

the CTD data. The environmental information considered as relevant to this work, obtained

from the CTD recorder, is composed of five different signals: temperature, measured in Celsius;

conductivity, measured in siemens per metre; pressure, in decibar; salinity, measured in psu; and

sound speed, measured in meters per second. For every different instance, the average of the

measures was considered.

This automatic annotation procedure could generate mislabelling in the dataset, therefore

the results were further analysed and filtered to avoid this issue. A data cleaning process was

performed, noting that the variation of the time domain amplitude of a vessel was greater than

that of the background sound. First, a median filter (med()) was used to de-noise the original

signal (a(t), where t represents time). The resulting audio was subtracted from the original

signal (Equation (14)) producing an audio signal (g(t)) free of DC offset. The standard deviation

of g(t) (represented as ̺, as shown in Equation (15)) was used to generate a scalar value of the

amplitude variation for each 1-second signal segment. The mean and standard deviation of the ̺
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values were obtained from the vessel and background sounds, respectively (µ̺−vessel, σ̺−vessel)

and (µ̺−back, σ̺−back). As expected, this analysis showed that the tagged vessel data delivered

higher variation (̺) when compared with the background audio (i.e., µ̺−vessel > µ̺−back).

Individual segments tagged to contain a vessel, but with a ̺ value that was less than the

overall standard deviation of the background increased by the mean (µ̺−back + σ̺−back), were

removed from the collection as they represented potentially mislabelled signals in the dataset.

g(t) = a(t) − med (a(t)) . (14)

̺ =

√

√

√

√

1

N − 1

N
∑

t=1

(g(t) − g)2
. (15)

In the equations above g represents the mean value of the signal with the median removed,

and N is the number of audio recordings.

The final version of the dataset was composed of the three scenarios, summarised in Table

6, each one with audio files saved as raw, uncompressed, WAV files. Also, a Comma-Separated

Value (CSV) file was generated with the annotation of the vessel type for each scenario. In

this work, each audio file was divided into 1-second segments, which were used as inputs to

the preprocessing filters. The complete data was divided into Training, Validation, and Test

subsets, following the proportion of 85%, 10%, and 5%, respectively. As there was a class

imbalance problem, only the Training subset was balanced using an oversampling strategy. An

oversampling factor, Equation (16), was used to define the size of each class based on the class

with the smallest length.

factor = min

(

2,
L

l

)

. (16)

In Equation (16), L represents the size in seconds of the class with the most data points,

and l represents the size in seconds of the class with the fewest data points.

For each category, the audios were selected randomly to compose the dataset. If the size of

the class did not reach the minimum size defined by factor (Equation (16)), the selection started

again, gathering repeated audios until the desired length was achieved. However, uniqueness

of each recording was enforced. Table 7 contains the duration of each subset for the dataset

scenarios.

Once the source of data was obtained, annotated, cleaned, and organised, the logical

sequence was the evaluation of the performance of the DL model using this new dataset. The
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Scenario Subset Tug Passengership Cargo Tanker Background TOTAL

First

Training 7302 7302 7302 7302 7302 36510

Validation 902 74 1257 165 1362 3760

Test 445 35 627 94 679 1880

Second

Training 13010 13010 13010 13010 13010 65050

Validation 1253 1093 1919 180 2335 6780

Test 689 551 931 95 1124 3390

Third

Training 10150 10150 10150 10150 10150 50750

Validation 1249 647 1217 107 2010 5230

Test 632 318 681 48 936 2615

Table 7 – The length, in seconds, of each dataset class for each of the three scenarios’ subsets.

following section will describe the tests and ML training sections performed with those acoustic

signals.

4.3.3 A method for underwater classification with the proposed dataset

This stage of the development focused on the UATC on the dataset generated at Section 4.3.2

using preprocessing filters and CNNs, detailing the procedures and experimental setup. First,

each entry in the dataset was divided into one-second segments, padding with zeros the values

with smaller sizes. After that, the three proposed preprocessing methods, CQT, Gammatone,

and Mel Spectrogram, were applied to each audio file. Initially, for comparison with the same

approach used on Section 4.3.1, the same preprocessing parameters were used (Version 1),

resulting in 64 frequency bins over 63-time intervals per data segment.

A second set of parameters, referenced as Version 2, was obtained by means of an

optimisation process. Analysing the frequency spectrum of the vessel’s signal, it was possible to

notice that the underwater acoustic signal produced was mostly focused on the low-frequency

band, which in our dataset was mostly below 3kHz, as exemplified in Figure 6. To maintain

a considerable safe range above the maximum frequency, spectrograms were generated from

18Hz (the minimum acceptable for the CQT representation for 1s audios) to the frequency of

4186Hz (C8 note and ≈ 1kHz above the 3kHz experimental value). Using a hop length of 256,

which represents half of the value proposed on Version 1, the resulting representation (Version 2)

had a length of 95x126. The values for the two versions of parameter sets are compared and

summarised in Table 8, where the values not related to a particular representation were marked

with "–".
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Figure 6 – Examples of audios from the five categories present in the dataset.

Parameter
Version 1 Version 2

Mel Gamma CQT Mel Gamma CQT

Hop Length 512 512 512 256 256 256
Window hann hann hann hann hann hann
N° of bins 64 64 64 95 95 95
Min. Freq. 0 20 32.7 18 18 18
Max. Freq. Auto Auto Auto 4186 4186 4186
Bins p. Oct. – – 12 – – 12

Table 8 – The detailing of the Version 1 and Version 2 sets of parameters used in the
preprocessing generation.

The raw audio signal and its processed representations (CQT, Gammatone and Mel

spectrograms), obtained with Version 2 parameters, are exemplified in Figure 7.

Inspired by the great number of machine learning methods applied to three-channel

images, such as colour images in RGB or Hue Saturation Value (HSV) colour spaces, the three

preprocessing methods cited above were combined in a three-dimensional representation, that

was used as input to the CNNs tested in this work. This was motivated by providing the Neural

Network with more complete representations, aiming to take advantage of the strengths of each

of the assumed preprocessing methods. Combining Mel Spectrogram, CQT, and Gammatone

resulted in data samples with dimensions of 64x63x3 for Version 1 and 95x128x3 for Version 2

parameters. In this work, this representation is referred as Complete.

This stage of the implementation used two distinct CNN models as base approach:

the VGGNet (SIMONYAN; ZISSERMAN, 2015) and the ResNet (HE et al., 2016). The

implementation of the former model suffered two main modifications from the baseline approach

(see Section 4.3.1): a Leaky ReLu was used as activation function, instead of a ReLu function,

and a Batch Normalisation layer was added, both changes aiming to reduce overfitting, as the new

dataset was divided in smaller scenarios. The resulting model architecture is shown in Figure

8 and was composed of four convolutional layers, which were used to extract the features, a

Batch Normalisation and a Leaky ReLu activation layers associated with a Max Pooling layer,
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Figure 7 – An example of audio used on this experiment. The image shows the raw audio signal,
on time domain, and its three preprocessed versions using the Version 2 parameters.

which resizes the image by a factor of 2. Lastly, the classification weights are delivered by a fully

connected layer.

Figure 8 – The VGG-based model architecture.

This stage of the work also used the ResNet18 model, with modifications on the input layer

to match the preprocessed images. The ResNet18 architecture, shown in Figure 9, is composed of

a Convolutional layer followed by 8 Residual Blocks, each one formed by two other convolutional

layers. As usual, the classification weights are generated by the final fully connected layers. As

there is a lack of open source codes or pre-trained models in this domain (see Section 3), both

VGG and ResNet18 models were trained without the application of transfer learning techniques.
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Figure 9 – The ResNet 18 model architecture.

After the model definition, an optimiser had to be chosen, aiming to minimise the error

in the training procedure. This work investigated the use of the SGD (ROBBINS; MONRO,

1951) and the Adam (KINGMA, Diederik P.; BA, 2015) optimisers. Their use was compared in

the tests executed in this work, using a learning rate of 0.001, decreasing exponentially, with a

gamma value of 0.95, over 40 epochs.

The resulting architecture was then composed of the preprocessed acoustic signals,

produced by the four strategies described in this section, applied to both VGG-based and

ResNet18 models. Each model was trained with batches of 8 images over 40 epochs using the

Categorical Cross-Entropy loss function. The block diagram of the complete pipeline is shown in

Figure 10, where the preprocessing block is the representation of Mel Spectrogram, Gammatone

Spectrogram, CQT, or the combination of the three preprocessing filters, and the model block

represents VGGNet or ResNet18.

Audios Spectrograms Classes

Preprocessing

Mel

Gamma

CQT

VGG

ResNet

Model

Figure 10 – The block diagram of the complete solution.
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5 EXPERIMENTS AND RESULTS

After the definition of the method used in this work, training sessions were executed for each

approach described in Section 4.3. The Section 5.1 describes the metrics used to instrument the

experiment, and than the results are reported on Section 5.2.

5.1 ENVIRONMENT SETUP

All the tests executed in this work were executed on a CPU using an Intel(R) Core(TM) i7-1065G7

machine with Ubuntu 20.04.4 LTS operating system, and were implemented using PyTorch

framework (version 1.11.0).

Results were reported using Micro-averaged Accuracy, providing a global overview of

the model performance in the real-world scenario. Three additional metrics were used, providing

complementary information: Precision, Recall, and F1-score. Those three latter metrics were

evaluated using macro-averaging, aiming to obtain a balanced evaluation across the classes.

5.2 RESULTS OF THE VESSEL-TYPE CLASSIFICATION WITH MACHINE LEARNING

The experiments were instrumented with metrics evaluation after every training epoch, ensuring

the convergence and correctness of the execution. Aiming to evaluate the performance of the

models using data not applied in the training stage, the results described in the following sections

were reported on the test subset of the respective datasets, and were obtained after the training

execution was completed.

5.2.1 Baseline development on DeepShip dataset

As this stage focused on the model development, the DeepShip dataset (IRFAN et al., 2021)

was used with addition of background noise recordings for a baseline. The original dataset was

randomised and divided into train, validation and test subsets, which represent 70%, 20%, and

10% of the total data respectively. Training sessions were executed for the three preprocessing

filters using Version 1 parameters (see Section 4.3.1 as reference). The results are shown in Table

9.

The CQT approach outperformed the other two methods with an accuracy of 83.92%

compared to 68.86% and 64.81% for the Mel Spectrogram and Gammatone Spectrogram,

respectively. To discriminate the results comparing the success rate for each existing class in the
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Method Accuracy % Precision % Recall F1 %

CNN

CQT 83.92 84.04 83.75 83.81

Gammatone Spec. 64.81 63.69 64.09 63.19
Mel Spec. 68.86 67.80 68.38 67.80

SCAE

CQT 77.53 78 77 77
Gammatone Spec. 73.59 74 73 73
Mel Spec. 70.18 70 70 69

Table 9 – Comparison of evaluated methods showing accuracy, precision, recall, and F1-Score
(F1)

set, a confusion matrix was also plotted in Figure 11. It shows that the background class has

the best results, with 98% of true positives, and cargo has the lowest, with 73%. The reason for

the reduced accuracy with respect to cargo ship class is likely due to the variability within the

class. Cargo ships can transport various types of cargo, goods or materials, which can influence

weight, motor power, number of propellers, size and other physical characteristics. All of these

can heavily influence on how the transmission medium will be disturbed, and consequently, how

the sound will be perceived.

Table 9 also shows a comparison between the results obtained for the proposed CNN with

the SCAE proposed in (IRFAN et al., 2021), using the same preprocessing layers. The metrics

reported for SCAE were extracted from original paper (IRFAN et al., 2021). The results obtained

in the present work outperformed the best approach found in the target study, the proposed

SCAE model, by a margin of 6 percentage points. Although there are many possible reasons

which influence this improvement, the fact that the background sound used on both training

sections were obtained from different sources must be taken into account. While the initial model

implemented on this work used the background sound from ONC sources, the same origin of

the vessel sounds, (IRFAN et al., 2021) used various websites as source for their data, possibly

introducing confounding factors. Also, for the CQT, the windowing was obtained with different

parameters, which can directly influence the temporal relation captured by the model. Knowing

that VGG-based methods have a strong capability to perceive spatial relations on images, the

different parameters for windowing can strongly impact the results. Another important difference

between the two works is the size of the resultant spectrogram. While the CNN model used

directly the two-dimensional representation, with size of 64x63, the spectrogram used by SCAE

was re-scaled to match the desired input size (from 40x43 to 48x48) generating additional errors

from interpolation.
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For both Gammatone and Mel Spectrograms, Table 9 shows that the results using SCAE

model were better than the proposed method. However, the results obtained with Mel spectrogram

were only 1.2 percentage point away from each other. These results can be heavily influenced

by the different preprocessing parameters used to feed the DL models, as the representations

obtained on (IRFAN et al., 2021) were produced on audios with 250 ms of duration, generating

spectrograms of size 40x43 and 64x43 for Mel and Gammatone, respectively. These results

pointed to CQT as preferred filter to the underwater classification, and reinforced the importance

of tuning the parameters of the feature extraction layers, guiding the experiments of the DL

method with the proposed dataset, described below.

5.2.2 Deep Learning method using the proposed dataset

The experiments performed in this stage focused on the baseline model application on the

proposed dataset and the adjustments and optimisations performed to improve the metrics.

Figure 11 – Confusion matrix with baseline results using the CQT preprocessing filter.



64

The training sessions reported in the following sections were executed for the three chosen

preprocessing filters using the proposed dataset and the Complete representation.

Optimiser selection

SGD and Adam are two of the most common optimisers used in DL. However, their performances

are domain dependent, which adds to the difficulty of selecting a standard approach for any

classification problem. Therefore, the choice of a suitable optimiser is an essential step in the

development of DL solutions. Table 10 presents the results of applying Adam and SGD to train a

VGG-based classifier on the the first dataset scenario described in Section 4.3.2, as this scenario

provides the best SNR since the signals were collected at a short distance from the sensor. Also,

the three preprocessing filters were applied using the Version 1 parameters.

Method Accuracy% Precision% Recall% F1% Time (h)

SGD

CQT 79.10 66.51 82.89 68.01 4.1
Gamma 53.30 47.71 58.47 43.91 4.0
Mel 54.47 51.23 61.74 44.40 3.9

Complete 84.46 71.48 85.56 75.42 4.5

ADAM

CQT 77.39 65.25 81.04 65.30 4.8
Gamma 56.59 52.32 59.51 44.94 4.2
Mel 5.26 21.00 20.16 2.23 4.5
Complete 73.08 60.75 72.72 61.14 5.2

Table 10 – Comparison of SGD and ADAM optimiser, showing accuracy, precision, recall,
F1-Score (F1), and total training time.

The results represented in Table 10 show that SGD outperformed Adam for CQT, Mel,

and the Complete representation, where the latter had the highest values (as shown in bold font

in Table 10). Adam only performed better than SGD in the test where the Gammatone filter was

used as preprocessing method, and yet the metrics obtained are very close to the SGD approach.

In addition, the training session using Adam and Mel spectrogram did not converge to a global

minimum, and the model mostly predicted the same class, as per the class-normalised confusion

matrix shown in Figure 12.

Comparing the best results for Adam and SGD, obtained with CQT and Complete inputs,

the higher accuracy was obtained with the SGD optimiser (84.46%), which is 7 percentage points

better than the best result obtained with Adam (77.39% of accuracy). Also, the SGD approach

showed to be more stable during the training procedure.
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Figure 12 – The confusion matrix of the execution for Adam optimiser using the Mel
spectrogram as preprocessing filter.

Preprocessing optimisation

As mentioned in Section 4.3.3, the Version 1 parameters for the preprocessing filters were

generated based on the information from the related literature, resulting in a 64x63 image.

Version 2 had images of dimensions 95x126, which were generated according to underwater

acoustics features. An experiment was conducted to establish a comparison between these two

representations where the same baseline setup used in Section 5.2.2 was applied: the VGG-based

model trained on data from the first dataset scenario. As the results obtained in Section 5.2.2

showed that the SGD optimiser was more suited to this problem, the experiments were only

performed using this optimiser. The results of this test were summarised in Table 11.

Both Mel Spectrogram and Gammatone methods presented lower accuracy values when

compared with CQT and Complete representations, as shown in Table 11 values show. The

worst CQT result, obtained with the Version 1, is 17 percentage points better than the best

result for Gammatone filter, obtained with the Version 2. The Mel Spectrogram and Complete
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Method Accuracy% Precision% Recall% F1% Time (h)

Vers. 1

CQT 79.10 66.51 82.89 68.01 4.1
Gamma 53.29 47.71 58.47 43.91 4.0
Mel 54.46 51.23 61.74 44.40 3.9

Complete 84.46 71.48 85.56 75.42 4.5

Vers. 2

CQT 86.32 73.97 88.34 77.91 10.5
Gamma 62.28 53.88 65.08 52.14 9.4
Mel 41.86 53.85 45.41 27.92 9.6
Complete 82.92 73.06 83.12 75.26 21.9

Table 11 – Comparison of Version 1 and Version 2 preprocessing representations, showing
accuracy, precision, recall, F1-Score (F1), and total training time.

representations did not present improvements with the Version 2 parameters. However, even using

the Version 1 Mel spectrogram results, this preprocessing method accuracy was 25 percentage

points below that of CQT for the same parameters, which represents a 31.15% accuracy drop.

Additionally, despite the accuracy drop of 1.54 percentage points for the Complete scenario, the

precision obtained in this case improved 1.58 percentage points, showing a very close result for

both versions of this representation. On the other hand, comparing the metrics obtained with

Versions 1 and 2 for the CQT method, it is possible to notice that Version 2 had a significant

improvement in accuracy, close to 9.13% (7.22 percentage points). This improvement was

probably due to the parameter optimisation process, that led to an increase in the temporal

scale with the shortest hop length, and an improvement of the frequency representation with

optimised frequency boundaries. These results suggest that the VGG-model, using Version 2 of

the preprocessing parameters, outperformed the results obtained with Version 1. Thus, Version 2

was considered as the baseline setting in the remainder of this work.

Model evaluation

After the investigation of the preprocessing parameters and the optimiser selection, the next step

in the development of the underwater acoustic signal classifier proposed in this work was the

selection of the DL model. The VGG and ResNet architectures were chosen in this work based on

their ubiquitous presence in the related literature and their potential to solve complex problems

from distinct domains. Training sessions were performed using the VGG-based model and

ResNet18. As the results obtained in the previous experiments suggested a better performance

using the SGD optimiser combined with CQT or the Complete representation generated using
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Version 2 parameters, these methods were chosen in the model comparison experiments described

here. Table 12 shows the results obtained in these tests.

Method Accuracy% Precision% Recall% F1% Time (h)

VGG
CQT 86.86 73.97 88.34 77.91 10.5

Complete 82.92 73.06 83.12 75.26 21.9

ResNet
CQT 94.95 89.21 95.60 91.92 53.5
Complete 97.07 94.57 97.61 96.00 77.1

Table 12 – Comparison of VGG-based and ResNet 18 models, showing accuracy, precision,
recall, F1-Score (F1), and total training time.

The results showed that the ResNet18 model outperformed the VGG-based for both CQT

and Complete preprocessing filters, presenting an improvement of 8.09 percentage points for

the CQT, and 14.15 for the Complete, being the latter the best result obtained for this dataset

scenario overall. The ResNet’s capacity to have more intermediate layers proved to be suitable

for the feature extraction stage, as it gives the model the ability to generalise the problem function

better, thus resulting in higher classification performance. Although the Complete representation,

combined with the ResNet model, presented an improvement of 2.12 percentage points in

accuracy, the CQT was able to obtain a similar value using one-third of the input size, as the

Complete is a three-channel representation. This result suggests that a fair trade off between

accuracy and model size is obtained when using the CQT preprocessing approach alone.

In this context, the final set of tests (described below) evaluates the impact of the distance

from the object of interest and the sensor, considering the three different dataset scenarios

(described in Section 4.3.2) using the CQT as preprocessing filter combined with the ResNet18

model.

Scenarios validation

The final test executed in this work intended to evaluate how the distance from the sensor to the

target vessel influenced the classification results. Based on the tests with the best results reported

above, the architecture composed of the CQT preprocessing filter applied to the ResNet18

model was used to compare the results obtained in training and testing on the three scenarios

described in Section 4.3.2. Also, an experiment using all the data from the three dataset scenarios

combined was performed, aiming to evaluate if the distance is impacting the accuracy, or if the

generalisation ability of the architecture is capable of dealing with this variable. The results

obtained in this test are shown in Table 13.
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Scenario Accuracy% Precision% Recall% F1% Time (h)

First 94.95 89.21 95.60 91.92 53.5
Second 94.45 94.57 93.89 94.17 101.3
Third 93.11 89.36 93.82 91.30 74.1
Combined 84.13 79.46 86.51 81.78 197.8

Table 13 – Comparison of the final architecture on the proposed dataset scenarios, showing
accuracy, precision, recall, F1-Score (F1), and total training time.

As the different scenarios do not contain the same number of instances (or the same

vessels), they are not directly comparable, making it difficult to precisely state which result

has higher metrics. However, these results suggest that there is no significant difference in

accuracy between the different scenarios. This could be explained by the depth and the ocean

temperature where the hydrophone was located, which provided the best context for underwater

sound propagation (DOMINGOS et al., 2022b), not degrading the SNR sufficiently to invalidate

the signal representation. However, it was possible to notice that combining all the data in the

training session caused an accuracy drop of, at least, 8.98 percentage points. The confusion

matrix for the Combined scenario is shown on Figure 13. This suggests that there is a negative

influence in the data from the different scenarios that confused the model during the training

stage, as discussed in more details in the next section.
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Figure 13 – The confusion matrix of the execution for the Combined scenario the CQT as
preprocessing filter and ResNet 18 model.
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6 DISCUSSION

The work reported in this thesis shows experimental evaluations of the main aspects related to

the development of a DL-based classifier for vessel types using underwater acoustic data.

The first tests focused on the baseline establishment for the classification of underwater

acoustic signals (see Section 4.3.1). The results, produced by a proposed VGG-based architecture,

were obtained on the DeepShip (IRFAN et al., 2021) dataset and compared with the SCAE

model. They showed that the experiment with the CQT processed inputs obtained the best results

for both approaches, with the highest metrics obtained with the proposed VGG-based method.

DL architectures are function approximators whose performance is strongly dependent on the

quality of the signals used as input, for instance, if they have a high signal-to-noise ratio or

appropriately represent the real-world scenario. The values obtained in this experiment showed

that the proper preprocessing methods parameter choice has to be the focus of the modelling.

With better input representations, the models can be simplified and still achieve similarly, or even

better, classification results. In addition, this result was also influenced by the different sets of

background sounds, which, in this work, were gathered from the same source of the original

signals. This also showed that the environmental conditions have to be considered in the solution,

as the sound propagates different depending on the environment.

After the baseline formulation, the following tests were performed on the new proposed

dataset. The first experiment reported focused on the selection of the most suitable elements to

compose the classifier architecture, such as the optimiser and preprocessing methods. Initially,

the two most commonly used optimisers, Adam and SGD, were tested and compared. The

results reported in Section 5.2.2 showed that Adam’s performance was not satisfactory in this

domain, owing to lower accuracy rates as a result of its inefficient treatment of local minima,

whereas SGD presented higher accuracy and a more stable performance. This agrees with other

studies (e.g. (WILSON et al., 2017; XIE et al., 2022)) that argue that adaptive optimisation

methods, like Adam, often generalise significantly worse than stochastic methods, such as SGD,

since the strategy used by the former to escape saddle points causes difficulties in achieving flat

global minima; in contrast, the momentum-based strategy of the latter provides a drift effect to

escape saddle points without affecting the flat minima selection (XIE et al., 2022). The tests

performed in the present work seem to corroborate this hypothesis, as the best results obtained

for SGD (using CQT) were 11.38 percentage points better than the performance (for the same

preprocessing filters) obtained when using the Adam optimiser.
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Another issue considered in this work was the selection of the most suitable representations

of the signal to be used by the CNN. In our dataset, the CQT representation presented significantly

better performance, with an accuracy of around 86%, when compared with Gammatone and

Mel spectrograms, with the accuracy of 62% and 54%, a minimum of 17 percentage points

improvement. There are various possible explanations for this finding. One of them is that the

acoustic signals generated by the vessels are predominantly composed of lower frequencies;

however, the Gammatone filter does not emphasise those signals properly, resulting in a lower

classification performance. Mel spectrogram, on the other hand, emphasises the lower frequencies

by mapping the frequency axis to the Mel scale, but maintaining the conversion from time-

domain using fixed time windows, which affects negatively the temporal resolution. In contrast,

CQT increases the time resolution towards higher frequencies while reducing the frequency

resolution; this results in emphasising the lower-frequencies, which is akin to the human

aural perception(BROWN, 1991). This feature makes the CQT spectrogram the most suitable

representation for automated classifications of underwater acoustic data using CNN, owing to the

nature of the convolutional layers.

The CQT filter produced the best classification results, with an accuracy of around 86%,

when compared with Gammatone and Mel spectrograms, with the accuracy of 62% and 54%. This

is due to some characteristics of this filter that are desirable in the preprocessing of underwater

acoustic signals, such as the exponential frequency resolution of constant-Q transform, which

enhances the lower-spectral frequency resolution. Besides, the CQT representation produced a

more pronounced 2D pattern than the other spectrograms, as can be observed in Figure 7. This

feature makes the CQT spectrogram the most suitable representation for automated classifications

of underwater acoustic data using CNN, owing to the nature of the convolutional layers.

The tests conducted with the Complete representation aimed to obtain a preprocessing

method that includes the advantages of each of the preprocessing methods considered in this

work. The results obtained showed that the classification accuracy obtained using this three-

channel representation was better than the other in some tests, but it did not achieve the best

performance overall. This was probably due to confounding effects that a more complex data

representation brings to a DL classifier. Moreover, as the Complete representation combines the

other preprocessing methods, its generation can be time expensive. Even in the cases where the

Complete representation showed the best results, its performance was similar to that obtained

using only the CQT spectrograms as input.
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With respect to the DL model selection, the ResNet approach overcame the VGG-based

model for both CQT and Complete data representation methods by at least 8.09 percentage points

in accuracy. This superior performance was probably due to the existence of residual blocks in the

ResNet model, which reduce the probability of overfitting. It is worth mentioning that the ResNet

model used had 17 convolutional layers, in contrast to four composing the VGGNet. Considering

the relative complexity and accuracy results of both models tested in this work, we can conclude

that, although ResNet18 produced the best classification results, VGG-based classifiers are still

suitable models to be used in applications with limited computational resources.

The final test executed in this work evaluated the influence of the distance between the

sensor to the targets with respect to the classification performance. Despite the fact that a

minor degradation in accuracy was observed with respect to an increase in the distance to the

sensor, the results obtained for the three scenarios showed similar figures. The tests using the

combination of the data points from all three scenarios presented the worse results compared with

the performance values obtained for each of its constituting scenarios. This was probably due to

the fact that, although a minor variation in the SNR (resulted from the distance between target

and sensor) did not affect the results obtained in each of the individual scenarios, this difference

was large enough to increase the complexity of the audio patterns contained in the combined

dataset, thus hindering the capacity of a simple classifier to find a suitable generalisation that

represented accurately the distinct classes.

Considering related work developed with data from the ONC initiative, accuracy values

of the order of 80% were reported using raw audio data, where time-frequency filter dependency

was not considered in DL pipelines (YANG, Honghui et al., 2019; TIAN et al., 2021). An

accuracy value of around 87% was reported as a result of the application a bio-inspired cochlea

model preprocessing filter to a CNN classification (SHEN et al., 2020). Although it is virtually

impossible to reproduce these results, as the annotated data and code used to generate them are

not publicly available, the results reported are similar to those obtained in the present work for

the combined dataset (84%), which shows that our general approach achieved state-of-the-art

results. However, the research reported in the present thesis achieved superior results when

distinct scenarios were considered with respect to the distance to the sensor, obtaining accuracy

at the order of 94%.

A previous experiment using various preprocessing filters for vessel-type classification,

applied on a publicly available annotated version of the ONC underwater acoustic signals

(IRFAN et al., 2021), also obtained the best classification results using CQT as preprocessing
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filters, although achieving the best accuracy values of around 77%, when using an auto-encoder

architecture.
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7 CONCLUDING REMARKS

This thesis presented a machine learning approach for vessel type classification using underwater

acoustic data. CQT, Mel Spectrogram, and Gammatone filters were used to preprocess the

acoustic data, aiming to extract relevant features of the signals. Striving to achieve a better

representation of the signal, the combination of the three outputs into three-channel data was

also proposed. The results showed that the CQT and the Combined approaches achieved the

highest accuracy results for the dataset used in this work. This study also compared the Adam

and SGD optimiser performance applied to the vessel type classification problem, showing that

the SGD optimiser is more stable and presents a better generalisation than Adam. Concerning

the deep learning model, results showed that ResNet18 presented the highest evaluation metrics

when compared to the VGGNet model.

A new dataset was defined, using the raw data from ONC, which include the underwater

acoustic signals annotated with the related vessel types. Three distinct scenarios were defined

with respect to the distance between the target vessel to the hydrophone used to capture the signal.

These three scenarios were compared using the proposed pipeline, achieving a accuracy of

94.95% using CQT as the preprocessing filter for a ResNet-based convolutional neural network,

providing a trade-off between model complexity and accuracy. Furthermore, a test was also

executed using the whole dataset, combining the three scenarios into a single dataset, resulting in

a classification accuracy of 84.13% with the same preprocessing and model.

A complete pipeline for the classification of underwater acoustic signals was proposed in

this thesis, whose source code and data will be made publicly available. However, some issues

were not addressed, which will be considered in future work. For instance, despite the promising

results obtained in classification using the isolated dataset scenarios, the results for the combined

approach have a large scope for improvement, since the accuracy across distinct scenarios had a

variation of 10 percentage points. Some strategies can be taken to address this issue, such as

the formulation of a joint DL approach composed of an initial model to automatically detect the

distance between the target vessel to the hydrophone (probably based on the SNR) and a second

stage to properly classify the data.

Future work will also consider the application of other machine learning models to the task

of classification of vessels from acoustic data, such as the MobileNet (SANDLER et al., 2018)

and the SqueezeNet (TAN; LE, 2019), as these models have a good trade-off between accuracy
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and model size in image classification tasks but are yet to be explored for the classification of

acoustic data.

The present work also reported an extensive literature review containing classification

methods that use convolutional Neural Networks alone (see Section 3.3). However, these

strategies were not applied in the current solution, representing another task in future works.

This approach can benefit the preprocessing optimisation through automatically learning a CNN

based processing method, providing representations focused on the application of DL models.

To achieve this result, Auto Encoders (HINTON; SALAKHUTDINOV, 2006), Variational Auto

Encoders (KINGMA; WELLING, 2013), and U-Net (RONNEBERGER; FISCHER; BROX,

2015) models can be explored.
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