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RESUMO

Os sistemas de comunicação, como por exemplo as redes móveis de quinta geração (5G)

têm se desenvolvido rapidamente e devido à esta evolução, o uso dos seus recursos tem se tor-

nado mais complexo. Assim, são necessários novos métodos para a concepção das redes e uma

das tecnologias para tal é o Encadeamento de Funções de Serviço que permite o tráfego atra-

vés de Funções de Rede Virtualizadas flexibilizando o uso dos recursos. Entretanto, há alguns

desafios para sua implementação, como por exemplo o volume de dados gerados pelas novas

aplicações. O Aprendizado por Reforço Profundo tem sido usado para resolver diversos proble-

mas computacionais, inclusive aqueles relacionados às redes de comunicação. Para atingir os

objetivos de otimização de recursos são necessários: a identificação e tratamento do tráfego de

rede e o seu correto roteamento pelos dispositivos. O objetivo deste trabalho é investigar como

as técnicas de Aprendizado por Reforço Profundo combinadas com a arquitetura de Encadea-

mento de Funções de Serviços podem proporcionar um mecanismo eficiente de identificação e

roteamento de tráfego baseado em perfis, auxiliando os dispositivos responsáveis pelo controle

da rede a reconhecer comportamentos indesejáveis e tomar as ações necessárias. Para isto, será

proposta uma implementação prática para demonstrar como estas técnicas podem ser aplicadas.

Palavras-chave: Encadeamento de Funções de Serviço. Aprendizado por Reforço Profundo.

Redes Móveis de Quinta Geração (5G).



ABSTRACT

Communication systems, such as fifth-generationmobile networks (5G), have developed

rapidly, and due to this evolution, the use of their resources has become more complex. Thus,

new methods are required to design networks. One of these technologies is the Service Func-

tion Chaining (SFC) that allows traffic through Virtualized Network Functions (VNFs), making

resources more flexible. However, its implementation has some challenges, such as the volume

of data generated by the new applications. Deep Reinforcement Learning (DRL) has been used

to solve several computational problems, including those related to communication networks.

To achieve the objectives of resource optimization are required: the identification and treatment

of network traffic and its correct routing through devices. This work investigates how Deep

Reinforcement Learning techniques can be used with the Service Function Chaining architec-

ture to identify and route based on profiles efficiently. That helps the elements responsible for

network control recognize undesirable behaviors and take the necessary actions. A practical

implementation is proposed to demonstrate how techniques can be applied.

Keywords: Service Function Chaining. Deep Reinforcement Learning. Fifth-generation mobile

networks (5G).
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1 INTRODUCTION

Communication systems such as the Internet have been developing rapidly, and due to

this evolution, the infrastructure, the devices, and resources of networked systems have become

increasingly complex and heterogeneous. Therefore, significant changes to design the network

are needed in the access layer and the network’s core to meet the new demands for applications

and services (LI, R. et al., 2018).

Fifth-generation mobile networks (5G) were designed to be the critical element that will

enable new services and technologies, such as Big Data and the Internet of Things (IoT). Accor-

ding to Fu et al. (2019), some technologies have emerged as candidates to underpin 5G networks

and help them to deal with unique traffic characteristics, such as the dynamic nature and high

volume of data required by new applications: the Software-Defined Networking (SDN) (HA-

LEPLIDIS et al., 2015; ITU-T, 2014), the Network Functions Virtualization (NFV) (ETSI, G.,

2013) and the Service Function Chaining (SFC) (HALPERN; PIGNATARO, 2015).

The SFC architecture allows the flow of information to travel through Virtual Network

Functions (VNFs), which provides better flexibility in using resources (LI, G. et al., 2020) as

defined in (HALPERN; PIGNATARO, 2015) and (ITU-T, 2018). However, such technologies

that will support next-generation networks bring some challenges for their implementations. For

example, the efficient use of the radio spectrum, hardware computational resources that support

the virtualized functions, the amount of data generated from new applications, and further in-

formation security threats arising from such applications. Therefore, it is crucial in this new

scenario to direct efforts towards investigating using resources efficiently and intelligently (LI,

R. et al., 2018).

1.1 MOTIVATION

According to Luong et al. (2019), Deep Reinforcement Learning (DRL) methods have

solved the most various computational problems successfully. Therefore, it is natural to use

them in environments related to communication networks (FU et al., 2019). Given the comple-

xity of the networks and the volume size of traffic generated, defining the parameters used by

Reinforcement Learning (RL) such as state spaces and actions can become cumbersome. The

RLmay not find the ideal policy reasonably, limiting its application in the dynamic environment

of new communication networks. The combination of Deep Learning (DL) with RL helps to

overcome such limitations.
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Part of optimizing computing resources, providing better Quality of Service (QoS) to the

customers, and reacting to security threats consists of identifying, handling network traffic, and

routing it correctly through the devices. Thus, a study of applying Deep Reinforcement Learning

methods in an environment with dynamic traffic, such as networks based on the concept of

Service Function Chaining, is needed. It is possible to see the academic community’s growing

interest in the topic by analyzing the number of articles found in the related work research phase.

For example, in 2018, the research found three, and in 2021, 112 so far, proving this research’s

relevance.

1.2 OBJECTIVES

This work investigates how DRL techniques can be used with the SFC architecture can

provide a mechanism for identifying and routing traffic based on profiles by forwarding the

packets to the correct path according to decisions taken by a learning agent. With the specific

objective of helping devices responsible for network control to recognize data flows that are

harming its performance, in terms of the use of computing resources and security threats, taking

the necessary actions to mitigate such undesirable behaviors.

For this, the work deploys a profile-based traffic routing architecture, differentiating re-

gular network traffic (applications known by the environment) and abnormal (unknown traffic).

It uses Deep Reinforcement Learning techniques based on Deep Q-Network (DQN) and its vari-

ants (the Double DQN and the Dueling DQN) with the Service Functions Chaining mechanism.

The goal is to provide enough information to the network controller to take the appro-

priate actions, control the packet flow, and send the unknown traffic to a specific service chain.

One of the possible actions in this service chain is implementing stricter security policies, such

as bandwidth restriction or even packet blocking.

1.3 STRUCTURE OF THE WORK

The text is organized as follows: Chapter 2 presents the basic theory to understand the

proposedmodel. Chapter 3 reviews the relatedworks. Chapter 4 shows themethodology used by

this research and explains the proposedmodel. Chapter 5 presents the experiments and discusses

the results. Chapter 6 presents the conclusions, research contribution, and suggestions for future

works.
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2 THEORETICAL BACKGROUND

This chapter presents the theoretical background to understand the proposed architecture.

It is divided into two parts: the first will address the concepts involving technologies considered

the pillars of 5G systems, such as SDN, NFV, Mobile Edge Computing (MEC), and SFC. The

second part describes the concepts related to Deep Reinforcement Learning.

2.1 NETWORK TECHNOLOGIES IN FIFTH-GENERATION MOBILE SYSTEMS

According to Blanco et al. (2017), the pillars of 5G networks are SDN, NFV, and MEC.

The presentation of such concepts and terminologies is essential because the SFC technology,

although not considered a pillar in the article mentioned, other authors place it as a facilitating

component for new services in next-generation networks (BHAMARE et al., 2016; MEDHAT

et al., 2016).

2.1.1 Software-Defined Networking (SDN)

The SDN architecture and its definitions, terminology, and objectives are found in the

following technical standards: Request for Comments (RFC) 7426 (HALEPLIDIS et al., 2015),

the International Telecommunication Union (ITU) recommendation Y.3300 (ITU-T, 2014), and

the ITU document TR-521 (ONF, 2016). In addition to these documents prepared by organiza-

tions for standardization in networks and telecommunications, other works can be mentioned,

such as publications by Kreutz et al. (2014) and Singh e Jha (2017). These papers present defi-

nitions, terminologies, examples of use, efforts of other researchers, and open opportunities for

future research. This section summarizes the concepts found in these documents.

The main idea of the SDN architecture is the network programmability through the abs-

traction of layers, aiming at efficient resources usage and the acceleration in implementing new

functionalities within the scope of next-generation networks. SDN achieves these objectives by

separating the Control Plane (CP), the Data Plane (DP), and the Application Plane (AP). In ad-

dition to these three, ONF (2016) conceives a fourth plan: the Management Plane (MP). Figure

1 shows this functional structure. The following subsections describe the functions of the SDN

planes.
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Figure 1 – SDN Architecture

Source: adapted from Kreutz et al. (2014)

2.1.1.1 Application Plane

This plane is responsible for accommodating the applications that demand resources and

services. Its requirements will define the behavior of the network elements, as examples of

applications that reside in this layer: access control systems to network services, monitoring

services, load balancers, and intrusion detection systems.

The Application Plane communicates with the Control Plane through standardized inter-

faces (crucial for SDN architecture). Although the SDN architecture documents do not define

the protocols for communication between the interfaces, the interaction between the Application

Plane and the Control Plane has been carried out through Application Programming Interface

(API) based on Representational State Transfer (REST) (SINGH; JHA, 2017). In the context of

ITU Telecommunication Standardization Sector (ITU-T), they are called Application-Control

Interfaces, but the term Northbound Interface (NBI) is quite common in the technical literature

as in Kreutz et al. (2014).
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2.1.1.2 Control Plane

The Control Plane is the layer responsible for defining how to forward the packets by

the network elements in the Data Plane. This function is performed by establishing the topology

and controlling the routing/forwarding tables according to the network resources required by the

services in the Application Plane. The great advantage arising from the separation of the Control

Plane from other planes is the possibility of programming resources allocation dynamically.

The previous section explained the interaction with the Application Plane. Communica-

tion with the Data Plane takes place through what ITU-T defines as Resource-Control Interfaces,

also known as Southbound Interface (SBI), according to Kreutz et al. (2014). Some examples

of protocols that allow this communication is the Openflow, currently at version 1.5.1, specified

in the ONF (2015), and the ForCES defined in RFC 5810 (HALPERN et al., 2010).

2.1.1.3 Data Plane

This layer is called Resource Layer by ITU-T, Forwarding Plane by Internet Engineering

Task Force (IETF), and Data Plane by Kreutz et al. (2014). In this layer are the network elements

responsible for receiving, processing, and sending (or discarding) the data packets according to

the decisions taken by the Control Plane. In the present work, it will follow the nomenclature

Data Plane.

It is noteworthy that such elements are deployed in hardware (physical) or software (vir-

tualized). In the technical documentation, there are no restrictions regarding this aspect. The

network infrastructure made up of links and devices such as routers and switches (physical or

virtual) builds the functional structure of this layer. The Control Plane stores the routing/forwar-

ding tables. The ONF has been providing invaluable efforts to support the integration between

the planes.

2.1.1.4 Management Plane

The Management Plane provides functions to ensure that the network is operating cor-

rectly, communicating with other planes or layers to support Fault Configuration Accounting

Performance Security (FCAPS) as per recommendation M.3400 (ITU-T, 2000). These func-

tions are essential for billing, customer service, statistics gathering, monitoring, and allowing

dynamic provisioning of services.
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How this plane communicates with others can occur through protocols, APIs, or inter-

nal communication between processes. Some examples are: the Simple Network Management

Protocol (SNMP) described in RFC 3411 (HARRINGTON; WIJNEN; PRESUHN, 2002), the

Network Configuration Protocol (NETCONF) proposed in RFC 6241 (ENNS et al., 2011), and

the Syslog (RFC 5424) presented in Gerhards (2009).

2.1.2 Network Functions Virtualization (NFV)

Network Functions Virtualization decouples functional entities Network Function (NF)

from defined hardware, making them elements based on software running on a server infras-

tructure with high computational capacity. These servers are called Commercial-Off-The-Shelf

(COTS), which allows for more flexible, better performance, and fault-tolerant scalability of

communication networks and provides a dynamic provisioning mechanism according to the de-

mand of resources.

Figure 2 – NFV Architectural Framework

Source: GSNFV ETSI (2013)
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The document: Network Functions Virtualisation Architectural Framework as described

in GSNFV ETSI (2013) defines the NFV architecture. Figure 2 shows the topology for NFV

and its blocks, and the following sections will explain their roles.

It is also important to emphasize that the communication between the different com-

ponents and functions runs through standardized interfaces (reference points) described in the

standardization document, which offers better flexibility to the operators that need to deploy the

Telco cloud using a vendor-neutral architecture.

2.1.2.1 Management and Orchestration (MANO)

The block called Management and Orchestration (MANO) is responsible for managing

and orchestrating VNFs. Such functions consist of instantiating (to start from a template) the vir-

tual machines and the network services through the automation, provisioning, and coordination

of workflows together with the blocks: Virtualized Infrastructure Manager (VIM) and the VNF

Manager VNFManager (VNFM). The MANO block is also responsible for integrating the NFV

architecture with the Operation Support Systems (OSS) and Business Support Systems (BSS).

MANO has three functional areas:

a) NFV Orchestrator (NFVO): responsible for the network resources and services

orchestration. It interacts with the other NFV blocks to ensure that the resources

and services requested by the applications are available and in an organized way

to serve them;

b) VNFM: its function is to manage the so-called VNF life cycle (instantiate, moni-

toring, allocating/deallocating computational resources according to the demand,

finalize and delete them), and coordinate changes to VNF images;

c) VIM: controls and manages the NFV Infrastructure (NFVI), where the COTS ser-

vers reside, allocating computing resources such as storage capacity, memory, vir-

tual processors, and connectivity to VNFs.

2.1.2.2 NFV Infrastructure (NFVI)

The NFVI provides the virtualization layer and the physical computing resources (me-

mory, processing, storage, and connectivity) using COTS servers (generic hardware). Hyper-

visors, defined as a specific operating system for managing and allocating hardware resources
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to virtual machines, do the task of mapping the physical resources to the virtual ones. VIM

manages NFVI.

2.1.2.3 Virtualized Network Functions (VNFs)

A VNF is a software-based application that provides network services, such as routers,

firewalls, intrusion detection systems, or load balancers. VNFs usually run in several virtual

machines using the resources provided by NVFI to deliver the services and connect them to the

network.

2.1.3 Mobile Edge Computing (MEC)

MEC defined in ETSI (2019) is a concept that allows cloud computing that processes

information in centralized data centers can be done at the edge of networks, that is, close to the

elements that require such processing.

Figure 3 – MEC Use Case

Source: Blanco et al. (2017)

In 5G networks, the goal is to integrate such technology in base stations (those that deal

with radio frequency signals). The objective is to make delay-sensitive applications (such as
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those based on Augmented Reality) not suffer from undesirable characteristics. A topology

with a possible implementation of the MEC is shown in Figure 3.

2.1.4 Service Function Chaining (SFC)

Aiming to create a virtual path of network functions for packet forwarding, the SFC

architecture establishes a chain of virtual service functions to route different types of network

traffic according to particular characteristics through the VNFs. SDN and NFV technologies

are the pillars that allow SFC deployment to offer a method of allocating network resources

efficiently and flexibly.

DRL methods will enable it to do so dynamically without manual configuration and pro-

vide advantageous options for new networks, such as 5G systems and virtual network services

in data centers for cloud implementations (ZHANG et al., 2018). Figure 4 illustrates a generic

topology of the SFC architecture.

Figure 4 – SFC Architecture

Source: adapted from Halpern e Pignataro (2015)

Efforts by standardization bodies have been made to propose how to implement the SFC.

For example, the IETF in the RFC 7665 (HALPERN; PIGNATARO, 2015), and in the ITU

recommendation Y.2242 (ITU-T, 2018).

The SDNmakes SFC possible by applying appropriate programming techniques to dyna-

mically control the topology of virtual network functions and direct traffic through them. This

mechanism provides advantageous options for new networks, such as 5G systems and virtual

network services in data centers (ZHANG et al., 2018). On the other hand, NFV allows for

efficient orchestration and implementation of the network functions.

(HALPERN; PIGNATARO, 2015) describes the components and functions, leaving it

up to the implementations how they will be done, for example, in a single module or separately.
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Such elements can be interconnected using the encapsulation (SFC encapsulation) defined by

Quinn, Elzur, and Pignataro (2018) and form a path called Service Function Path (SFP) that

establishes the route to be taken by the packets. According to Halpern e Pignataro (2015), four

logical components form the SFC architecture:

a) Classifiers (Service Classification Function): entry (or exit) point into the SFC

domain. Its function is to establish the criteria for classifying packets based on po-

licies. The traffic that complies with such rules has its data encapsulated (VLAN

tags or MPLS labels) and then forwarded to the Service Function Forwarder (SFF)

function. Such classification can be done by criteria such as 5-tuple (source/desti-

nation IP addresses, source/destination ports, and transport protocol) or with Deep

Packet Inspection (DPI);

b) Forwarders (SFFs): after defining the classification policy, the SFF directs traffic

to the Service Function (SF) connected according to the assigned encapsulation,

besides processing the traffic received from the SFs. It is also possible to change

the information on packets so that they are reclassified or even close the SFP;

c) Service Functions (SFs): a component implemented in hardware or software (VNFs)

whose objective is to handle the packets received by the forwarding function (SFF).

Such operations are performed at any layer of the Internet Protocol (IP) stack;

d) SFC Proxies: responsible for communication between SFC domains and those not

part of this architecture (legacy networks), allowing interoperability. The proxies

remove or add header information according to the traffic direction (adds in the

order from non-SFC to SFC and pull it out in the opposite one).

2.1.5 Considerations about the Section

SFC is essentially formed by applying SDN and NFV to customize traffic flows, aiming

at differentiated treatment through routing policies and optimally allocating network resources

(firewalls, load balancers, and routers). SDN supports network control, which means how to

connect the network elements, and NFV provides the computing resources to them. Hantouti,

Benamar, and Taleb (2020) present how SFC uses SDN and NFV to deploy an end-to-end ar-

chitecture, as shown in Figure 5.
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Figure 5 – Service Function Chaining in an SDN and NFV enabled network

Source: adapted from Hantouti, Benamar and Taleb (2020) .

Regarding the SFC placement, there is one example of putting it at the edge (using MEC

architecture), for instance, in Meng Wang et al. (2019) or using the service chaining in the core

as in Sun and Kim (2016) . This work uses SDN and NFV concepts to deploy an intelligent

agent using DRL algorithms at the core network.

2.2 DEEP REINFORCEMENT LEARNING

This section summarizes the basic Deep Reinforcement Learning theory, including the

concepts needed to understand it. That includes Reinforcement Learning basics, Markov Deci-

sion Processes, and Deep Learning. Afterward, the section discusses Deep Q-Networks (DQN)

and two enhancements, Double DQN and Dueling DQN.

2.2.1 Reinforcement Learning Overview

In Reinforcement Learning (RL), an autonomous agent learns to make the best decisions

based on the interaction with an unknown environment to maximize the final cumulative reward.

The agent experiments randomly (trial and error) given a set of actions (a) at a time step (t);
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such actions change the state (s) of the environment to a new state (st + 1), and based on their

consequences, the agent receives a positive reward (+r) for doing the right thing or a negative

reward (punishment) (-r) otherwise.

The agent does not have any information about the action to take. It learns how to act and

optimize its behavior from the reward it got from its actions; in other words, it tries to determine

the best actions from its own experience. Figure 6 illustrates the general architecture of RL

(NGUYEN; REDDI, 2019).

Figure 6 – Reinforcement Learning

Source: NGUYEN; REDDI, 2019

Sutton and Barto (2018) describe the RL system as composed of four basic elements:

a) The policy (π): defines the agent’s strategy to choose the following action based

on the current state. It maps the states perceived from the environment to actions

taken in those states. It plays a critical role for an RL agent since the policy selected

by the agent dictates the learning behavior;

b) The reward function: is a numerical value that the agent receives as immediate

feedback based on its action. It defines the goal in a reinforcement learning pro-

blem and should make a clear difference between good and wrong actions for the

agent (SUTTON; BARTO, 2018);

c) The value function: represents the expected return value that an agent gets starting

from a state following some policy. It determines the long-term payoff of a state;

d) The model of the environment: this is something that represents the behavior of

the environment, that allows inferences to be made about how the environment



27

will behave (SUTTON; BARTO, 2018). When the agent tries to learn the optimal

policy with the model dynamics, it is called model-based learning. When the

agent tries to learn the optimal policy without the model dynamics, it is called

model-free learning (RAVICHANDIRAN, 2018).

The objective of RL is to choose the optimal action that depends on the current state that

will maximize the cumulative reward over the episodes. The cumulative reward Rt is given

by the immediate reward rt plus the expected future rewards discounted by γ at each time step

(Equation 1). The factor γ prevents the return from reaching infinity by deciding how important

future and immediate rewards are (RAVICHANDIRAN, 2018).

Rt = rt + E[γrt+1 + γ2rt+2 + . . .] = Ea,s[
∑︂

i

γirt+i]. (1)

The expected reward is called the value function V (s). The value-action, or Q-value,

function is the expected reward when the agent starts in state (s) and taking an action (a):

Q(st,at) = E[
∑︂

i

γirt+i♣st, at] (2)

Both value and Q-value functions depend on the agent policy π. The policy is the des-

cription of how the agent chooses to act at a specific state (PIENROJ; SCHÖNBORN; BIRKE,

2019). According to Mitchell (1997), the agent’s objective is to learn a policy π that maximizes

rewards or minimizes accumulated penalties after choosing a sequence of actions. The policy π

maps states to a distribution of probabilities about actions, π : S→ p(A = a ♣ S).

2.2.1.1 Markov Decision Processes (MDP)

According to Grasser and Keng (2019) , a Reinforcement Learning problem can be des-

cribed as a Markov Decision Process (MDP). All MDPs satisfy the Markov property, which

indicates that any transition to another state is only dependent on the current state, irrespective

of the previous states. The following equation describes the Markov property:

Pr (st+1 = s, rt+1 = r♣st,at) (3)

According to Wilson and Riccardi (2021) , this property is crucial because all future

states and rewards under a control policy π can be known at any given state.
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An MDP is defined as a tuple (S, A, T, R), where: (S) is a set of states, (T) is the

transition probability function that maps the state-action pair at time (t) on the distribution of

states at discret-time (t + 1) and (R) is the function that gives the cost (or reward) for making a

decision a ∈ A, when the process is in a state s ∈ S (PELLEGRINI; WAINER, 2007).

2.2.1.2 Q-learning

A commonly used algorithm in Reinforcement Learning to calculate the Q-value is the Q-

learning (WATKINS and DAYAN, 1992) . Q-learning is a model-free algorithm. It estimates

the Q-value iteratively: Q(s, a) for each pair (s, a), its goal is to maximize the accumulated

reward after the action sequence:

Q(s, a)← Q(s, a) + α[r + γ max
a′

Q(s′, a′)−Q(s, a)]. (4)

Where:

a) Q(s,a) represents the value obtained the last time action a was executed at state s;

b) s is the current state;

c) a is the last action taken by the agent;

d) α is the learning rate used to determine the impact of new information to the exis-

ting Q-value;

e) r is the reward obtained after performing action a in state s;

f) γ is the discount factor (0 ≤ γ < 1) and represents the effect of valuing rewards

received earlier higher than those received later;

g) maxa′ Q(s′, a′) is the maximum Q-value that can be obtained from the state s,

independently of the action chosen;

h) s′ is the state reached after performing action a in state s;

i) a′ represents a possible action from state s.

The Q-learning updates directly approximate the optimal action-value function through

the ‘max’ operator. Once either all Q-values converge or a certain number of iterations is re-

ached, the algorithm will terminate (NGUYEN; REDDI, 2019). The Q-Learning algorithm

implementation is illustrated below:
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Algorithm 1 – Q-learning
1 Algorithm parameters: step size α ∈ (0, 1], small ϵ > 0;
2 Initialize Q(s, a), for all s ∈ S+, a ∈ A(s), arbitrarily except that Q(, ·) = 0;
3 foreach episode do
4 Initialize S;
5 foreach step of episode do
6 Choose a from s using policy derived from Q (e.g., ϵ-greedy);
7 Take action a, observe r, s′;
8 Q(s, a)← Q(s, a) + α[r + γ maxa Q(s′, a)−Q(s, a)];
9 s← s′;

10 end
11 end

Although Q-Learning has proven to be important in many applications of Reinforcement

Learning, it needs to use a table called a Q-table to store the expected rewards (Q-values) of

actions given a set of states (tabular method). As the action/state pair increases, the Q-table

also increases, requiring more significant amounts of memory and processing, making applying

Q-learning prohibitive in some real-world scenarios, including those related to next-generation

communication systems.

This characteristic is known as ”state-space explosion”(RESTUCCIA;MELODIA, 2020)

or the ”curse of dimensionality”(XIONG et al., 2019). To overcome this issue, Deep Reinforce-

ment Learning combines the use of Deep Learning through Artificial Neural Networks (ANN)

to approximate the values of Q-function, and Reinforcement Learning to analyze the rewards

received through each action in different states (XIONG et al., 2019).

2.2.2 Deep Learning Overview

According to LeCun, Bengio e Hinton (2015), Deep Learning is a set of algorithms and

techniques that allow computational models that use multiple processing layers to learn repre-

sentations of data with various levels of abstraction. The objective is to avoid manual descrip-

tion of features in a data set by automatic learning from data (NGUYEN; REDDI, 2019). The

most common method to deploy Deep Learning models is by using Artificial Neural Networks

(ANNs).

These ANNs use artificial neurons to create a mathematical model to simulate human

brain behavior. The goal of the ANNs is to approximate a function f that describes the input

and output data relationship. Every neuron has adjustable weighted inputs (θ) (that simulate the

synapses), an activation function (defines the output given an input), and one output (WONG;
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LEUNG; FIELD, 2021). Figure 7 shows a simple model of an artificial neuron as proposed by

McCulloch e Pitts (1943):

Figure 7 – Artificial Neuron

Source: Wong, Leung and Field .

The output of the artificial neuron represented in Figure 7 can be calculated by following

equation:

y = g(θ1x1 + θ2x2 + θ3x3 + b) (5)

Where:

a) y is the output signal;

b) g is the activation function;

c) θi is the weight that will multiply the respective xi;

d) xi is the input signal;

e) b is the bias.

The ANN architecture is organized into interconnected layers: input, hidden, and output.

The input layer contains the neurons that send data to the hidden layer, and then this layer sends

information to the output layer. The number of hidden layers is specific to eachmodel depending

on the problem complexity. Every neuron receiving multiple inputs takes a weighted sum of

them, passes it through an activation function, and responds with an output. Deep Learning

uses two or more hidden layers to train the model to learn internal data patterns using multiple

processing (hidden) layers. The terminology Deep Neural Network (DNN) is used in this case.

Figure 8 illustrates a simple ANN architecture:
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Figure 8 – Artificial Neural Network (ANN)

Source: Wong, Leung and Field .

To learn how to adjust neurons’ weights for a multilayer network, ANNs use a method

called backpropagation. It employs a gradient descent optimization algorithm to try to minimize

the squared error between the network output values and the target values for these outputs as

described in Mitchell (1997).

2.2.3 Deep Q-Networks (DQN)

The Q-learning algorithm has been used as an efficient mechanism to reach the optimal

policy when the state space and action space are small. However, in most scenarios in the

communications systems, these spaces are usually large. Then, finding find the optimal policy

may be computationally infeasible for the Q-learning algorithm. (NGUYEN; REDDI, 2019).

Mnih et al. (2015) presented a variation of Q-learning to deal with this shortcoming. The

method implements a Deep Q-Networks (DQN) using Deep Neural Networks (DNN), instead

of the Q-table to derive an approximate value of Q∗(s,a) (NGUYEN; REDDI, 2019). Figure 9

shows the DQN. This combination of Deep Neural Networks (inherited from Deep Learning)

and Reinforcement Learning is called Deep Reinforcement Learning (DRL).
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Figure 9 – Deep Q-Networks

Source: (XIONG et al., 2019)

According to Guo et al. (2019), two characteristics make DQN different from the other

algorithms:

a) Experience Replay: consists of adding a replay buffer, whose function is to save

the agent’s previous experiences. This memory contains a collection of experience

tuples (S, A, R, S ′). Such tuples are gradually added to memory in each interaction

with the environment. The goal is to store past experiences and then use a random

subset of those experiences to update the network, rather than just using the most

recent experience;

b) Target Network: a separated neural network Q∗ is used in an attempt to keep the

algorithmmore stable. A copy of the neural network is maintained in this separated

network, and it is used for the value Q(s′,a′). In this way, the Q-values predicted

in this second network are used to backpropagate and train the main network. An

essential part of this process is that the Target Network parameters are not updated

but periodically synchronized with the network parameters of the main one. The

goal is to use Target Network Q-values to train the main network and improve

training stability.

Algorithm 2 presents the Deep Q-Learning (DQL) algorithm with experience replay and

fixed target q-networks. The use of experience replay is one of the main concepts in Mnih et al.
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(2015) work. This method stores the agent’s experience (transitions between states in the past

and the corresponding actions and rewards) at each recorded time step et = (st, at, rt, st+1) in

a replay memory to calculate the loss correctly in the future at any time step. Mini-batches of

experiences are then sampled randomly and used to perform the weight updates for the DQN

training.

Algorithm 2 – Deep Q-Learning with experience replay and target network
(DQN)

1 Init: replay memory D with capacity M , Qθ with random weights, θ− = θ
2 for a number of episodes do
3 initialize s0

4 while episode not done do
5 take action at ∼ π(st), observe rt and st+1 // π can be ϵ-greedy for

instance
6 store transition (st, at, rt, st+1) in D
7 sample random mini-batch of transitions ((sj, aj, rj, sj+1))j=1,...,N

from D

8 set yj =

∏︂

⨄︂

⋃︂

rj if sj+1 is a terminal state
rj + γ maxa′ Qθ−(sj+1,a

′) otherwise
9 θ ← θ − α∇θ

1

N

√︂N
j=1(yj −Qθ(sj,aj))

2

10 every k steps, update θ− = θ

11 end
12 end

There are several advantages in using experience replay over traditional Q-Learning. The

network can use every stored experience for other updates, making the learning process more

efficient. This mechanism reduces the variance of the updates by eliminating the correlation

between these samples. It has been shown that such a mechanism improves training stability.

The following sections discuss twoDQN enhancements, the Double DQN and the Dueling DQN

2.2.4 Double DQN

DQN uses themax operator to estimate the Q-value of the next state-action pair, and this

information is based on the same values both to select and evaluate action. This over-estimation

of Q-value can cause poor performance of Q-learning. To overcome this issue, Hasselt (2010)

presented the Double Q-learning.

Double Q-learning implements two Q functions (QA and QB) in the target value compu-

tations, each of which is used to update the other for the next state. Algorithm 3 illustrates this

process.
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Algorithm 3 – Double Q-Learning
1 Init: QA, QB, s
2 repeat
3 Choose a, based on QA(s, .) and based on QB(s, .), observe r, s′

4 Choose (e. g. random) either QA or QB to update
5 if update QA then
6 Define a∗ = argmaxaQA(s′,a)

QA(s, a)← QA(s, a) + α(s, a)(r + γQB(s′, a∗)−QA(s,a)) else if update
QB then

7 Define b∗ = argmaxaQB(s′,a)
QB(s, a)← QB(s, a) + α(s, a)(r + γQA(s′, a∗)−QB(s,a))

8 end
9 end

10 s← s′

11 until end

Double Q-learning uses tabular methods, so it has the same drawbacks as methods as Q-

learning (the state-space explosion). Then, Van Hasselt, Guez e Silver (2016) proposed the Dou-

ble DQN that uses two different Deep Neural Networks: the Deep Q-Network (DQN) and the

Target Network, to update the parameters. Double DQN can generalize the Double Q-learning

algorithm to work with arbitrary function approximation, including Deep Neural Networks. The

objective is to get the most benefit of Double Q-learning and keep the DQN with minimal chan-

ges.

2.2.5 Dueling Q-learning

Using Enduro (the Atari game) as an example, Ziyu Wang et al. (2016) noted that for

many MDPs, it is unnecessary to estimate each action taken at every time step. For many states,

the choice of action has no impact on what happens. Inspired by this idea, they introduced

the dueling network architecture that explicitly separates the representation of state values and

(state-dependent) action advantages using two different streams to estimate the values for each

action. The dueling architecture splits the Q-values in the value function V (s) and the advantage

function A(s,a).Equation 6 represents how to compute the Q-values using this method:

Q(s, a) = V (s) + A(s, a) (6)

What the Dueling DQN algorithm (WANG, Z. et al., 2016) proposes is that the same

neural network splits its last layer into two parts, one of them to estimate the state value function

for state s (V(s)) and the other one to evaluate the advantage function for each action a(S(a,a)).
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In the end, it combines both parts into a single output that estimates the Q-values. Figure 10

presents the architecture of a Dueling DQN.

Figure 10 – Dueling Q-learning

Source: (RAVICHANDIRAN, 2018)

The two streams are combined via a particular aggregating layer to estimate the state-

action value function Q, as shown on the right side of Figure 10. Both streams share a common

convolutional feature learning module. The last module uses the following mapping:

Q (s, a, θ, α, β) = V (s, θ, β) +

⎠

A (s, a, θ, α)−
1

♣A♣

∑︂

a′

A (s, a′; θ, α)

⎜

(7)

Where:

a) θ represents the parameter value of the convolutional network;

b) α is the parameter of the value stream;

c) β is the parameter of the advantage stream;

d) A represents the length of the action space.

According to Ziyu Wang et al. (2016), the advantage of the dueling architecture is its

capacity to learn the state-value efficiently. In experiments, the authors demonstrated that the

proposed method could more quickly identify the correct action during policy evaluation as

redundant or similar actions are added to the learning problem.
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2.2.6 Comments about the Section

This section presented the essential background to understanding Deep Reinforcement

Learning, especially the DQN and its enhancements (Double DQN and Dueling DQN). The ap-

plication of Reinforcement Learning using Deep Learning (through Artificial Neural Networks)

to approximate the Q-value Q∗(s,a), results in Deep Reinforcement Learning methods and their

variations. The relationship between RL, DL, and DRL is illustrated in Figure 11.

Figure 11 – (a) Reinforcement Learning, (b) ANN, and (c) Deep Q-learning

Source: (NGUYEN; REDDI, 2019)

This work chose the DQN and its variants due to the research done for Chapter 3 (Related

Work), where it could see that the DQN is the most algorithm used. Table 1 below the DRL

algorithms used by the researchers in their works.

Table 1 – Algorithms Used by the Authors

Algorithm Papers
Deep q-networks 104

Deep Deterministic Policy Gradient 43
A3C 31

Double Deep Q-Learning 19
A2C 10

REINFORCE 9
Dueling Deep Q-Learning 8

Source: the Author.
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3 RELATED WORK

Applying Deep Reinforcement Learning techniques in emerging networks, such as 5G

networks, has been the subject of several kinds of research by the academic community. This

chapter will present some efforts of other authors that underpin this research. It divides into

three sections: the first will present the works related to the application of DRL techniques to

traffic classification, the second those about the application of DRL to the SFC, in the third,

those associated with the theme of applying the SFC in traffic classification.

The material used in this chapter was obtained by searching in Google Scholar using

the terms: Deep Reinforcement Learning and Service Function Chaining (or Chain), from 2018

to 2021. The search resulted in 215 articles after the following selection criteria: (i) articles

not written in English or Portuguese were discarded, and (ii) the selected sources: ACM, IEEE,

SBC, Elsevier, Springer, and Wiley. Table 2 shows the articles by the publication source:

Table 2 – Papers per Publisher

Source Papers
ACM 4
Elsevier 28
IEEE 156
SBC 1

Springer 15
Wiley 11
Total 215

Source: the Author.

Table 3 below shows the published papers by year and demonstrates the academic com-

munity growing interested in the topic proving this work relevance:

Table 3 – Papers per Publication Year

Year Papers
2018 3
2019 26
2020 74
2021 112
Total 215

Source: the Author
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After analyzing the keywords in the 215 papers, the following step consisted of finding

articles that covered traffic classification and then exploring the references cited by the papers

according to the number of citations mentioned in Google Scholar. The goal was to verify

the relevance of the selected articles. This refinement resulted in 17 works. Figure 12 below

illustrates the relationship between topics and sections in this chapter, where the intersection of

the three previous themes establishes the scope of this research. The following sections discuss

the relevant papers that supported this work.

Figure 12 – Research Scope

Source: the Author

3.1 DEEP REINFORCEMENT LEARNING APPLIED TO TRAFFIC CLASSIFICATION

Akbari et al. (2020) used the Neural Fitted Q-learning (NFQ) algorithm (RIEDMILLER,

2005) to implement an autonomous threat mitigation architecture in SDN networks (Autono-

mous Threat Mitigation in SDN using Reinforcement Learning – ATMoS). They provided defi-

nitions of how to formulate threat mitigation as a Reinforcement Learning problem, which they

said is one of the main challenges in network security.
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The architecture has three modules: the SDN infrastructure that fits the network obser-

ver, implemented with Snort (ROESCH, 1999), responsible for monitoring network traffic and

providing information about the state of the network for the autonomous management module.

This module is the solution intelligence, composed of the Reinforcement Learning agent that

executes API commands to implement the policies in the network via the SDN controller. The

framework created by the authors can be seen in Figure 13:

Figure 13 – ATMoS Architecture

Source: AKBARI et al., 2020

Such policies define the path that traffic from a given host must take, with the options

(i) being less restricted and (ii) more restricted security. The third module, called host behavior

profiling, accommodates two types of hosts: those that send benign traffic and those that send

malicious traffic. The results presented the number of iterations for the NFQ algorithm conver-

gence as a function of the number of hosts involved. They showed that the solution could be

used for attack mitigation. The great advantage of the work was its conception based on open

source tools and its availability on the Github site for the reproduction of the experiments. This

work adapted the SDN paradigm to use the SFC, which the authors did not cover.

Liang et al. (2019) proposed a packet classification system called ”Neural Packet Classi-

fication”to deal with the limitations of methods based on heuristics. The first limitation mentio-

ned was the ”manual”adjustment for the construction of decision trees. Decision trees provide

good accuracy in classifying packets, but with the application of Deep Reinforcement Learning,

they can be more efficient. The second limitation is related to the fact that heuristics do not

explicitly optimize the objective function.
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3.2 DEEP REINFORCEMENT LEARNING AND SERVICE FUNCTION CHAINING

Zhang et al. (2018) presented a framework for provisioning service chains (SFCs) that

combine SDN and NFV to provide the most efficient use of network resources and is promising

for emerging technologies like 5G systems and virtual network services in data centers. In

addition to applying dynamic resource provisioning mechanisms, the survey also mentioned the

open challenges and opportunities. One of them that motivated this work was the possibility

of using DRL in allocating paths and forwarding traffic autonomously. Although they did not

mention how to do it, the concepts presented helped adapt and apply the SFC in the test scenario

of this research.

Ning, Wang, and Tafazolli (2020) proposed a network model to solve the SFC optimi-

zation problem in a multiservice environment. They introduced a method based on Deep Rein-

forcement Learning to obtain optimized operations by adapting the issue as a Markov decision

process, as seen in Figure 14.

Figure 14 – Multiservice Environment

Source: NING et al., 2020

They conceived the network as a directed graph, where the VNFs are the vertices, and

the links between them compose the edges. That is crucial to adapt the objective functions

that base the optimization of SFC flows: Maximum Link Usage (MLU), Maximum Path Delay

(MPD), and VNF Maximum Usage (VMU). They obtained the data to evaluate the model from

a real network, the GÉANT project. The author compared the data with those resulting from

the Mixed-Integer Linear Programming (MILP) method (SMITH; TASKIN, 2008). The DRL-
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based solution achieved an almost ideal performance compared toMILP and proved better when

compared to traditional solutions (without learning mechanisms).

He et al. (2020) proposed an intelligent provisioning framework for VNFs to optimize

resource scheduling in a cloud environment called Cloud of the Things (CoT). A traffic iden-

tification mechanism based on Deep Learning was combined with a VNF path selection using

Deep Reinforcement Learning to improve the Actor-Critic algorithm using Kronecker-Factored

Trust Region (ACKTR) (WU et al., 2017). They performed the simulation in two phases: the

first was to assess the accuracy of traffic identification, where they used a dataset with eight

types of real traffic classes got in Sharafaldin, Lashkari e Ghorbani (2018). Using the mGBDT

(Multi-Layered Gradient Boosting Decision Trees) algorithm (FENG; YU; ZHOU, 2018), they

compared it with others (k-nearest neighbors, Decision Trees, and Random Forests).

They concluded that it had the best precision rate. The second part consisted of provisio-

ning the VNFs using Pytorch to build the DRL algorithms test architecture. They demonstrated

that the proposed solution had superior performance than other DRL algorithms, improving the

users’ Quality of Service (QoS).

A limitation in applying DRL in a dynamic SFC implementation, according to Xiao et

al. (2019), is to assume that network resource requests are predetermined, regardless of real-

time variations. The authors’ proposal consists of NFVDeep, an adaptable, online, and Policy

Gradient-based approach that treats dynamic network state transitions as a Markov decision

process based on Peters and Bagnell (2010) . In this way, the SFC requests are automatically

implemented according to their QoS characteristics. They created a testbed architecture where

the environment from a DRL perspective was the NFV network topology, as illustrated below:

Figure 15 – NFVDeep

Source: XIAO et al., 2019
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The simulations showed that the architecture significantly outperforms the solutions

found in other research. The strength of the article was to demonstrate how a dynamic network

environment, such as those found in NFV, can be mapped as a Markov decision process, in

addition to using the SFC paradigm to solve the issue of dynamic resource allocation such as

processing load and bandwidth.

3.3 SERVICE FUNCTION CHAINING APPLIED TO TRAFFIC CLASSIFICATION

Shin and Kwon (2017) proposed a technique to execute the SFC flexibly to manage

traffic adaptively, with its real-time monitoring according to a method known as Recyclable

Counter with Confinement (RCC) (NYANG; SHIN, 2016). The RCC consists of a counter that

aims to aggregate the large-scale traffic flow in real-time, resulting in optimized use of device

memory. The SFC allows allocating virtualized resources (network functions) on-demand.

They applied the RCC method into the SFC classifier module, and thus the architec-

ture was divided into three modules: classification, RCC, and encapsulation. They tested three

network functions to verify the functioning: Firewall (FW), Deep Packet Inspection (DPI), and

Load Balancer (LB). Depending on the amount of traffic generated, the packets travel along a

path, Figure 16(a). According to pre-defined thresholds that define an anomalous behavior, they

go through the other route, Figure 16(b). In this way, the packet routing decision process can

be done differently according to its characteristics.

Figure 16 – SFC Paths by SHIN and KWON, 2017

(a) SFC1 (b) SFC2

Source: SHIN and KWON, 2017

In Trajkovska et al. (2017), the authors designed an SFC-based traffic routing solution

that used the concepts of SDN and NFV using open-source solutions to deploy the components,

a valuable opportunity in terms of implementation cost and experiment reproducibility. They

used OpenStack and OpenDayLight as solutions to build the architecture to improve packet
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processing performance and optimize network resources. Figure 17 shows the testbed topology.

Figure 17 – Testbed Architecture by TRAJKOVSKA et al., 2017

Source: TRAJKOVSKA et al., 2017

They performed extensive traffic tests with the following protocols: Internet Control

Message Protocol (ICMP), TransmissionControl Protocol (TCP), UserDatagramProtocol (UDP),

and video traffic to assess: (i) the effectiveness and accuracy of the traffic routing in a working

NFVI environment, (ii) the robustness of the Service Functions Chaining configuration, (iii) the

efficiency of traffic redirection and packet handling and (iv) the scalability of the implementa-

tion.

Experimental evaluations have shown that the SFC, with its ability to initialize dyna-

mically, can reconfigure and relocate VNFs without the need to install new hardware. Also,

SFC enables the implementation of an efficient mechanism for delivering end-to-end traffic th-

rough VNFs in a cloud environment, differentiating traffic based on protocol type and profile

according to its requirements for quality of service parameters (such as packet loss, delay, and

jitter).

3.4 FINAL CONSIDERATIONS FOR THIS CHAPTER

This chapter presented a summary of the works related to this research that helped find

open opportunities in decision-making to address the topic of the application of Deep Reinfor-

cement Learning in the Service Function Chaining for packet routing.

For example, Akbari et al. (2020) used the concept of Software Defined Networks, which

can be adapted in the SFC environment, which the authors did not address. Liang et al. (2019)
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concluded that DRL could make the package classification task more efficient, but they did not

perform tests in the SFC environment. Zhang et al. (2018) and He et al. (2020) helped elucidate

how to apply the SFC to organize network functions, route packets through them, and adapt the

topology of the present work.

The issue of modeling an SFC-based network as a DRL problem was the subject of Ning,

Wang, and Tafazolli (2020). However, traffic routing was not the subject of the research. In

Xiao et al. (2019), the QoS parameters were the authors’ focus, and this work has adapted aiming

at configurations of routing policies based on the application type. Other articles have proposed

efficient methods of applying SFC for traffic classification and routing, as in Shin and Kwon

(2017) and Trajkovska et al. (2017). However, they did not use machine learning mechanisms,

an opportunity for improvement that the present work used to make networks more autonomous.

A decisive topic in the choice of the works presented in this chapter was open-source

software to elaborate their test platforms. As can be seen in Akbari et al. (2020) and Trajkovska

et al. (2017) this is very important to enable the practical implementation of the research and a

possible lab demonstration.
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4 PROPOSED ARCHITECTURE

This work investigates combining Deep Reinforcement Learning techniques with the

Service Function Chaining architecture, using the references discussed in Chapter 3. It aims at

providing a mechanism for identifying and routing traffic based on profiles by forwarding the

packets to the correct path according to decisions made by a learning agent. It performs through

a practical implementation on a test platform designed with open-source tools. Subsequent

sections describe the proposed model and tools used.

4.1 PROPOSED TESTBED

Figure 18 shows the proposed model. It consists of four modules described in the fol-

lowing sections.

Figure 18 – Proposed Model

Source: the Author
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4.1.1 Module 1: Access - Traffic Generator

This module is responsible for simulating the access layer of a telecommunications

network, such as those used in mobile networks of fourth/fifth generations (4G and 5G) and

broadband networks. It generates network user IP (Internet Protocol) traffic for multiple appli-

cations to create and send the necessary information (dataset) to the classifier module.

Here, Virtual Machines (VMs) based on Linux have been deployed on the OpenStack

platform to execute the software nping to generate IP packets. The objective is to simulate a

cloud environment and to save resources. The following subsections give an overview of the

tools used in this module.

4.1.1.1 Openstack Platform

OpenStack (OPENSTACK, 2021) is a free and open-source software platform for cloud

computing, mainly deployed as an Infrastructure-as-a-Service (IAAS). It controls large pools of

computing, storage, and networking resources throughout a data center, all managed and provi-

sioned through APIs with authentication methods. A Graphical User Interface (GUI) dashboard

is available, giving administrators control while providing tools to provide resources through a

web interface. It also has a Command Line Interface (CLI).

It is the tool used to deploy virtual machines (containers are also possible) and the networ-

king needed to connect them. Beyond standard IAAS functionality, additional components pro-

vide orchestration, fault management, and service management amongst other services to ensure

the high availability of user applications. Figure 19 illustrates the OpenStack architecture.

Figure 19 – OpenStack Architecture

Source: https://docs.openstack.org/security-guide/introduction/introduction-to-openstack.html

Table 4 describes the main components:
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Table 4 – OpenStack Main Components

Component Function
Nova In charge of VM creation and computing resources allocation
Glance Image management
Neutron Network management
Keystone Authentication management
Horizon The dashboard for OpenStack management
Cinder Provides persistent block storage for VMs
Swift Provides support for storing and retrieving arbitrary data in the cloud

Source: the Author, adapted from www.openstack.org

The complete OpenStack installation is sometimes cumbersome, and it is beyond the

scope of this work. However, it is possible to check an all-in-one installation option (used in

this work): https://www.rdoproject.org/install/packstack/.

4.1.1.2 nping

Nping (NPING, 2021) is a command-line oriented packet assembler and analyzer. The

ping command inspires the software, but ping can only send ICMP echo requests. On the other

hand, nping supports TCP, UDP, and ICMP. The Linux command below shows how to install

the nping on an Ubuntu machine:

$sudo apt-get install nping

Some examples of using nping to generate packets is given below:

$nping -c [number of packets] –[transport protocol] -p [destination port] [target host]

$nping -c 10 –tcp -p 80 www.fei.edu.br (to simulate HTTP packets)

$nping -c 10 –tcp -p 443 www.fei.edu.br (to simulate HTTPS packets)

$nping -c 10 –tcp -p 5060 10.10.10.5 (to simulate SIP packets)
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4.1.2 Module 2: Classifier

This module performs the packet classifier function in the context of the SFC and selects

the appropriate forwarder (SFF), and tags the packet according to proper rules. The classifier

module receives the traffic generated by the access module. It assigns an SFC, creating a tuple

(destination port, SFC) where the SFC must be set according to Table 5. This tuple is sent to

the next module, the core.

Table 5 – Traffic Type per SFC

Traffic Type Protocol SFC Traffic Profile
WEB HTTP/HTTPS 1

Management FTP/SSH/DNS/NTP/SNMP 2
Other Other 3

Source: the Author

Within the classifier, there are three functions:

a) Classifier: the tool used was the Linux iptables. The advantage of this approach

lies in its ability to analyze the network, and transport layers of the Open Systems

Interconnection (OSI) model (ZIMMERMANN, 1980);

b) Handling: This process captures the packets with the TCPDUMP tool, generating

a file in pcap format. A pre-processing is performed to prepare the file and send

it in a format understandable by the intelligence module (agent). It converts the

pcap format into a Comma-Separated Values (CSV) file;

c) Forwarder (SFF): As seen in the theory chapter, the forwarder module is respon-

sible for forwarding packets to the appropriate network functions (SFs). In this

case, a Layer 2 Switch meets the need. The Linux operating system already has

this feature internally.

The following subsections provide a short description of the tools used in this module.

4.1.2.1 IPtables

IPtables (IPTABLES, 2021) is a tool to set up, maintain, and inspect the IP packets filter

rules in the Linux kernel. Several tables with different policies may be defined to send or drop

the IP packets to the external network. It is also possible to change some internal information
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inside the IP packet. It is software that comes with standard Linux distributions without instal-

ling. Some examples of rules are:

To accept HTTP packets:

$iptables -A INPUT -i eth0 -p tcp –dport 80 -m state –state NEW,ESTABLISHED -j AC-

CEPT

$iptables -A OUTPUT -o eth0 -p tcp –sport 80 -m state –state ESTABLISHED -j ACCEPT

To accept HTTPS packets:

$iptables -A INPUT -i eth0 -p tcp –dport 443 -m state –state NEW,ESTABLISHED -j AC-

CEPT

$iptables -A OUTPUT -o eth0 -p tcp –sport 443 -m state –state ESTABLISHED -j AC-

CEPT

To reject SIP packets:

$iptables -I INPUT -p udp -m udp –dport 5060 -j DROP

4.1.2.2 TCPDUMP

Tcpdump (TCPDUMP, 2021) is a network capture tool for protocol analysis, also cal-

led a network packet sniffer. It helps to monitor the traffic in IP networks by intercepting the

data packets as they go through the network interface card. One of its advantages is passive

monitoring, which does not change the packet information.

It is available under most Linux/Unix-based operating systems through the command-

line interface. Tcpdump also gives an option to save captured packets in a file for future analy-

sis. It keeps the file in a pcap format, and it is possible to convert it into a CSV file. To install

tcpdump:

$sudo apt-get install tcpdump

Some example of commands to capture packets:

To capture 50000 packets and save in a file (master.pcap):
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$tcpdump -w master.pcap -i eth0 -c 50000

To capture http packets:

$tcpdump -i eth0 port 80

To capture packets from source IP address 192.168.0.2:

$tcpdump -i eth0 src 192.168.0.2

4.1.3 Module 3: Core

This module has two sub-modules: Packet Processing and Get Reward. The first one cal-

culates the percentage of packets processed successfully based on the SFC assigned by module

2. The latter calculates the rewards, whose mechanism is explained in the next section. Module

3 is also responsible for simulating the VNFs that receive and processes the packet sent by the

classifier. It also provides and sends the information (states and rewards) to the intelligence

Module.

At the beginning of the experiments, this work sought to create a mechanism that would

allow the interaction between the VMs that terminate the traffic (Service Functions) and the

agent (intelligence module). However, it was unsuccessful in providing information to the agent

in real-time. Then, it was adapted as Python (VAN ROSSUM; DRAKE, 2009) code to allow

the experiments to keep running.

4.1.4 Module 4: Intelligence

This module is the agent from the Deep Reinforcement Learning perspective, whose

function is to run the Deep Q-Networks (DQN) algorithms. It calculates and sends the action

to the classifier module to move the packet to a new SFC. The proposed model is described as

a DRL problem in the next section. The tools used here were: Python, OpenAI Gym, PyTorch,

Matplotlib, and Pandas.

4.1.4.1 OpenAI Gym

According to Brockman et al. (2016), the OpenAI Gym is an open-source Python library

for developing and comparing reinforcement learning algorithms by providing to the developers
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a standard API to communicate between learning algorithms and environments (standard or

customized). This work chose this tool because it is easy to deploy a customized environment

used for the experiments.

4.1.4.2 PyTorch

It is open-source and provides tools to implement Deep Learning algorithms. Created

by Paszke et al. (2019), PyTorch is a computational tensor library that takes advantage of using

Graphics Processing Unit (GPU). It is used for broad applications, such as Natural Language

Processing and Computational Vision.

4.1.4.3 Matplotlib

Matplotlib (HUNTER, 2007) is a library that allows the creation of interactive visua-

lization and plotting graphs in Python. And like the other tools used in this work, it is open

source.

4.1.4.4 Pandas

Pandas is a Python library for data analysis and manipulation, and it helps Python to

deal with more complex data structures, such as CSV files and Excel sheets (TEAM, 2020;

MCKINNEY, 2010). It is a tool used to handle a high volume of data. This work used it to help

with dataset cleaning, feature selection, and processing.

4.2 DATASET OVERVIEW

The dataset for this research was created by combining the tools described in subsections

4.1.1 and 4.1.2. Nping generated the packets. This application runs on top of virtual machines.

To capture the packets, tcpdump performed the function. Afterward, the pcap file was converted

to CSV. The dataset consists of 50000 IP packets (raw data) with several types of traffic. The

destination port (dst.port) was used to define the application type in IP networks. Table 6 shows

the distribution of packets per application type. Table 7 shows the distribution per profile as

defined in the classifier (WEB traffic, management traffic, and other traffic).
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Table 6 – Packets per Application

Application Type (PORT) Packets
HTTP (80) 5319
HTTPS (443) 5174
FTP (21) 40
SSH (22) 39
DNS (53) 10765
NTP (123) 26
SNMP (161) 40

Other 28597
Total 50000

Source: the Author.

Table 7 – Packets per SFC Profile

Application Type (PORT) Packets
WEB 10493

Management 10910
Other 28597

Source: the Author.

The application traffic should be assigned an SFC path according to the policies received

as actions from the agent by the classifiermodule. Packets with dst.port = 0 or dst.port = 1 were

deleted (data cleaning), since they do not represent a practical application. This work followed

the process shown in Figure 20 to handle the dataset.

4.3 PROPOSED MODEL AS DEEP REINFORCEMENT LEARNING PROBLEM

In the proposed architecture, the environment from aDeepReinforcement Learning pers-

pective is composed of network elements organized according to the Service Function Chaining

(SFC) architecture, including the processing nodes, communication links, and Virtual Network

Functions (VNFs).
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Figure 20 – Dataset Handling

Source: the Author

4.3.1 State Space

When a new episode starts, the classifier sends the packets based on tuple (dst.port, SFC)

to the core module, and then this module calculates the percentage as follow:

SFC% = (packet_OK/(packet_OK + packet_NOK)) ∗ 100 (8)

Where packet_OK is the correct packet in the correct SFC, and packet_NOK is the pac-

ket in the wrong SFC. This percentage is sent as an array [SFC1%, SFC2%] to the intelligence

module. The core module sends to the agent rewards evaluated for each step.
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Figure 21 – Proposed Model as DRL Problem

Source: the Author

The percentage calculated by the Core module is the state space (observations) in terms

of the Deep Reinforcement Learning environment. It consists of an array with two elements,

percentage of packet processing successfully in SFC1 and SFC2 [SFC1%, SFC2%]. The in-

formation for SFC3 was discarded just for simplicity since most of the application types are

relevant to SFC1 and SFC2.

4.3.2 Action Space

The actions consist of changing the traffic between the SFCs. The objective is that after

the training period, the intelligent agent forwards each packet to its proper destination applica-

tion. In other words, it goes through the correct SFC. For example, packets destined for the

HTTP service must go through SFC 1 (WEB SFC). Table 8 shows the actions space.

Table 8 – Actions Table
Action Value Action Meaning

0 Move packet to SFC1
1 Move packet to SFC2
2 Move packet to SFC3

Source: the Author
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4.3.3 Reward System

The reward system is based on packet processing performance in SFC1 (WEB traffic)

and SFC2 (network management traffic). Table 9 shows the values.

Table 9 – Reward System

Parameter Reward Value
If (SFC1% or SFC2%) = 100% +2

If next state value after action is higher than actual state +1
If next state value after action is lower than actual state -1

If packets that supposed to be sent to SFC1 or SFC2 were sent to SFC3 -5

Source: the Author

4.4 FINAL CONSIDERATIONS ABOUT THE CHAPTER

This chapter presented and described the proposed model for an architecture based on

SFC according to RFC 7665 (HALPERN; PIGNATARO, 2015) and Y.2242 recommendation

(ITU-T, 2018), with the goal of the application of DRL algorithms to establish a mechanism of

traffic routing that try to provide a better use of network resources. The application of DRL in

the SFC environment is essential given the volume of data generated by new applications and

the complexity of new network architectures. It is expected that the current limitations will be

overcome, providing more intelligent and secure networks.

Several researchers have developed and evaluated test platforms based on the SFC ar-

chitecture due to their importance in the context of new communication networks and cloud

computing. Such efforts are in the papers of Zhang et al. (2018), Castanho et al. (2018), and

Peuster et al. (2019).
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The list of software and tools used for this research, their versions, functions, and the test

platform module to which they are applied are presented in Table 10 below. It is noteworthy

that all of them are or have their free versions.

Table 10 – Software and Tools
Software Version Function Module
OpenStack Queens VMs Resource Managemnt All
NPING 0.7.80 Traffic Generator 1-Access-Traffic Generator

IPTABLES v1.8.4 Packet Flow Control 2-Classifier
TCPDUMP 4.9.3 Packet Capture 2-Classifier
Python 3.8.5 Programming Language 3-Core and 4-Intelligence

OpenAI Gym 0.17.3 DRL Agent 4-Intelligence
PyTorch 1.9 Machine Learning Library 4-Intelligence
Matplotlib 3.4.2 Data Visualization Library 4-Intelligence
Pandas 1.3.0 Data Analysis Library 4-Intelligence

Source: the Author.
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5 EXPERIMENTS AND RESULTS

This chapter describes the experiments performed. It is divided into two main sections,

the 5.1 that shows the results for the algorithms and the 5.2 that discusses them. Specific details

of each algorithm used are explained in their respective subsection.

To evaluate the proposed model, this work deploys different agents using the Q-learning

(WATKINS and DAYAN, 1992) , the DQN (MNIH et al., 2015), the Double DQN (VANHAS-

SELT; GUEZ; SILVER, 2016) and the Dueling DQN (WANG, Z. et al., 2016). The goal is to

compare their performance related to routing traffic through the SFCs. Although Q-learning is

not considered a DRL algorithm, this research finds it essential to compare some well-known

DRL methods with another that does not apply DNNs to show the benefits of using them.

As explained in Chapter 4, the state space is composed of the packet processed in each

SFC (Web and Management). And rewards are based on the next state, and it will depend on

the next percentage value for the packet processing in each SFC. The rewards were normalized

because there was a high variance depending on the number of packets processed. The following

formula was used:

rewards = rewards_received_per_episode/packets_processed_per_episode (9)

The hardware set up used was a server with two Intel X5650 processors (six cores each,

2.66GHz), 32 GB RAM, and an NVIDIA card GeForce GTX 1050Ti (Graphical Processor Unit

– GPU), running Linux (Ubuntu 20.04 LTS).

Each algorithm executed 1000 episodes with three packet sampling (250, 500, and 1000

packets). It was repeated the experiments five times. Due to the fact they showed similar results,

only one graph for each algorithm using the three different packet samples is presented. Table

12 shows the hyperparameters for the DQN and its variants (Double and Dueling).
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Table 11 – Hyperparameters Values

Parameter Value
Hidden Layers 1

Neurons (Hidden Layer) 50
Discount Factor (γ) 0.8
Learning Rate (LR) 0.001
Exploration Rate (ϵ) 1
Epsilon Decay 0.99

Minimum Epsilon 0.1
Batch or Replay Size 20

Source: the Author

5.1 RESULTS

This section presents the results, and the subsections are divided according to the algo-

rithm used. The subsequent sessions discuss them.

5.1.1 Q-learning

This experiment used Q-learning to evaluate the proposed model. The goal is to investi-

gate if the algorithm can improve the packet processing in the SFCs by learning over episodes.

Three experiments were performed using different values for γ (Discount Factor = 1.0, 0.5, and

0), Jay et al. (2019) used the same approach to compare their results. Besides the different γ

values, a different number of packets for the training was used. The objective is to understand

if the sampling changes the agent behavior. The tables below present the results in terms of

statistical data, where SD means Standard Deviation.
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Table 12 – Q-learning for 250 Packets

Experiment Mean SD Mean - Last 100 Episodes SD - Last 100 Episodes
γ = 1.0 0.090 0.241 0.208 0.001
γ = 0.5 0.093 0.233 0.214 0.008
γ = 0.0 0.091 0.237 0.214 0.014

Source: the Author

Table 13 – Q-learning for 500 Packets

Experiment Mean SD Mean - Last 100 Episodes SD - Last 100 Episodes
γ = 1.0 0.141 0.259 0.272 0.001
γ = 0.5 0.155 0.237 0.276 0.006
γ = 0.0 0.153 0.240 0.275 0.062

Source: the Author

Table 14 – Q-learning for 1000 Packets

Experiment Mean SD Mean - Last 100 Episodes SD - Last 100 Episodes
γ = 1.0 0.075 0.253 0.232 0.001
γ = 0.5 0.115 0.223 0.232 0.006
γ = 0.0 0.109 0.237 0.213 0.197

Source: the Author

The values on the tables show that the γ = 0.5 resulted in the best performance in terms

of mean rewards for the last 100 episodes, some after the agent converged and started to show

stability. The following figures show the results. The points in the graphic indicate the sum of

normalized rewards received for each episode.
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Figure 22 – Q-learning for 250 Packets

Source: the Author

Figure 23 – Q-learning for 500 Packets

Source: the Author
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Figure 24 – Q-learning for 1000 Packets

Source: the Author

The results show that the agent can learn over the episodes, selecting the correct SFC path

according to the traffic type, even though the γ = 0 had instability for 500 and 1000 packets at the

end. The shape of the figures is due to the randomness of the traffic in the training environment.

This fact is valid for all the other algorithms.

5.1.2 DQN

Here the results for the experiments using DQN are presented. They used the same pro-

cedure as for Q-learning (same values for packet sampling and γ). However, the agent resulted

unstable, as Figure 25 shows.
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Figure 25 – Reward over Episodes for 1000 Packets

(a) Rewards (γ = 1) (b) Rewards (γ = 0.5)

(c) Rewards (γ = 0)

Source: the Author

Due to this issue, other experiments were performed using γ = 0.8. The results improved,

as it is possible to see in the graphics below. The evaluation also used two different learning

rates (LR = 0.01 and LR = 0.001) to check the better performance and stability. The tables below

show the statistical results.

Table 15 – DQN for 250 Packets (γ = 0.8)

Experiment Mean SD Mean-Last 100 Episodes SD-Last 100 Episodes
LR = 0.01 -0.185 0381 -0.054 0.248
LR = 0.001 -0.138 0.562 0.175 0.027

Source: the Author

Table 16 – DQN for 500 Packets (γ = 0.8)

Experiment Mean SD Mean-Last 100 Episodes SD-Last 100 Episodes
LR = 0.01 -0.272 0.393 -0.044 0.271
LR = 0.001 -0.009 0.510 0.207 0.123

Source: the Author
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Table 17 – DQN for 1000 Packets (γ = 0.8)

Experiment Mean SD Mean-Last 100 Episodes SD-Last 100 Episodes
LR = 0.01 -0.376 0385 0.173 0.275
LR = 0.001 -0.077 0.432 0.109 0.154

Source: the Author

As the tables above show, the experiments that used LR = 0.001 presented a better per-

formance for the rewards average, except for the 1000-packet sampling. However, the sample

mentioned provided better stability with the same LR as the standard deviation value shows.

And sometimes, network environments must have a more stable system than those with a better

average metric.

The following graphics show the rewards received from the environment for each epi-

sode during the training.

Figure 26 – DQN for 250 Packets (γ = 0.8)

Source: the Author
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Figure 27 – DQN for 500 Packets (γ = 0.8)

Source: the Author

Figure 28 – DQN for 1000 Packets (γ = 0.8)

Source: the Author

It is possible to conclude that for the environment used in this work, the best value for

gamma using DQN is 0.8, and the learning rate of 0.001 provided more stability at the end

episodes. Then, the following experiments (Double and Dueling) will use the same parameters.
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5.1.3 Double DQN

In this experiment, the agent used the Double DQN algorithm. But, now, the tests only

used the Learning Rate = 0.001 since this was the best value for DQN. The tables below show

the statistical results for each packet sampling. The other hyperparameters values are the same

as illustrated in Table 18.

Table 18 – Dueling DQN Experiments

Experiment Mean SD Mean - Last 100 Episodes SD - Last 100 Episodes
250 Packets -0.282 0.665 0.151 0.051
500 Packets -0.123 0.592 0.191 0.055
1000 Packets -0.026 0.627 0.092 0.085

Source: the Author

Verifying the table is possible to check that the 500-packet sample had the better perfor-

mance in terms of mean rewards over the episodes. The figures below illustrate it.

Figure 29 – Double DQN for 250 Packets (Learning Rate = 0.001)

Source: the Author
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Figure 30 – Double DQN for 500 Packets (Learning Rate = 0.001)

Source: the Author

Figure 31 – Double DQN for 1000 Packets (Learning Rate = 0.001)

Source: the Author

The results show that the agent can learn over the episodes, selecting the correct SFC

path according to the traffic type and reaching stability.

5.1.4 Dueling DQN

For Dueling DQN was followed the same procedure as in Double DQN experiments.

The tables below show the statistical data.
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Table 19 – Dueling DQN Experiments - Learning Rate = 0.001

Experiment Mean SD Mean - Last 100 Episodes SD - Last 100 Episodes
250 Packets -0.620 0.612 0.118 0.047
500 Packets -0.380 0.671 0.136 0.033
1000 Packets -0.222 0.542 0.070 0.032

Source: the Author

And the graphics below show the results for the rewards over episodes.

Figure 32 – Dueling DQN for 250 Packets (Learning Rate = 0.001)

Source: the Author

The results show that the agent can learn over the episodes, selecting the correct SFC path

according to the traffic type, and it reaches stability. A comparison between the performance of

the different algorithms will be discussed in the next section.
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Figure 33 – Dueling DQN for 500 Packets (Learning Rate = 0.001)

Source: the Author

Figure 34 – Dueling for 1000 Packets - Learning Rate = 0.001

Source: the Author

5.2 RESULTS DISCUSSION

In this section, the results are discussed. The experiments tried to evaluate the applica-

bility of DRL algorithms to forward the packets through the correct SFC. Then what should be

analyzed: is it possible to use those algorithms to improve the dynamic SFC selection related to

the network’s initial state?
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A fact that should be evaluated is the importance of using DNNs. The advantage is

shown in Figure 35, where algorithms using DNNs overcome the results of Q-learning (without

DNNs). The graphic below presents a summary of the algorithms used in this work. It shows the

difference in percentage points (p.p.) compared with the initial state (packet processing values)

after the training period.

Figure 35 – Performance (Comparing with Initial State)

Source: the Author

Packet processing was used as the metric for comparison because, in terms of network

performance, it is considered one of the most important, along with delay, jitter, and throughput.

The following table illustrates the packet processing per SFC after the training period.

Table 20 – Dueling DQN Experiments - Learning Rate = 0.001

Algorithm SFC1 % SFC1 %
Q-learning 61.94 70.00
DQN 63.15 34.39

Double DQN 61.59 38.46
Dueling DQN 63.79 34.38

Source: the Author

Although the metrics in the experiments are far from ideal for a production environment,

it is possible to improve the algorithms to get better performance. Moreover, it is possible to
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test other algorithms such as Advantage Actor-Critic (A2C) and Proximal Policy Optimization

(PPO) using the proposed architecture. Another alternative for improvements is to try different

hyperparameters for the DNNs.

Another performance measurement is the rewards mean and standard deviation. That is

important not only for understanding the stability but also the advantage in using DRL methods

and comparing their performance. The following graphic shows this data.

Figure 36 – Performance (Mean and Standard Deviation)

Source: the Author

It is possible to conclude that Q-learning offers the best performance in terms of mean

and stability (lower standard deviation). However, in terms of packet processing, DQN had the

best performance for both SFCs. It could improve in 10.34 p.p. for SFC1 (Web) and 9.68 p.p.

for SFC2 (Management).

Finally, in Figure 37 where the four algorithms used in this work are compared. The

shape of the figure is due to the randomness of the traffic in the training environment. It shows

the rewards over the episodes. We can conclude that the agent learns over the episodes, selecting

the correct SFC path according to the traffic type.
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Figure 37 – Q-learning x DQN x Double x Dueling

Source: the Author

The proposed architecture tried to use Double and Dueling DQN variants. However,

these algorithms did not have better performance than using DQN. According to Luong et al.

(2019) a possible reason is using them only benefits for MDPs with large action spaces. For

small state spaces, as in the case of the environment used in this work, the performance of DQN

is even better than Double and Dueling. Moreover, during the experiments, the Dueling takes

more time to finish the training period; thus, more computing resources are needed to apply such

a method.
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6 CONCLUSION

This work proposed architecture to investigate how Deep Reinforcement Learning al-

gorithms can be used in the context of the Service Function Chaining to provide a mechanism

for identifying and forward network traffic based on profiles. The proposed architecture divi-

ded the traffic into three profiles (WEB, Management, and Unknown). To evaluate the model,

it deployed an agent using Python, and it got the environment’s information and took action

(selects an SFC). It receives a reward according to the result of its actions. The experiments

used Q-learning, Deep q-networks, and two variants, the Double DQN and Dueling DQN. A

packet sampling with a different number of packets and IP applications was used as the dataset

to evaluate the model.

The experimental results elucidated that the agent in charge of making the routing de-

cisions can learn how to do that over time (episodes), applying the policies to get optimized

rewards. Such mechanisms help the networks be more resilient, intelligent, and secure. Q-

learning provided a better result in learning stability and rewards average. The DQN resulted in

better performance related to packet processing, the metric that matters in production networks.

The other algorithms tested also presented positive results in the experiments improving the per-

centage of packets processed compared with the initial state and optimizing the rewards over

the episodes.

This work faced some challenges, for example, modeling the proposed architecture as

a Deep Reinforcement learning environment. According to Graesser e Keng (2019), it is a

common issue that the DRL researchers must solve. Defining states and rewards is challenging

if the environment does not provide enough information to the agent. In the case of this research,

the reward mechanism was tested empirically, and it took much time to find the best values for

rewarding.

Another challenge and point for improvement are getting better performance in packet

processing. The results varied from 60% to 65%, which is unacceptable for production networks.

However, it is possible to go further and find out what the reason is. Perhaps, the first thing to

evaluate is the hyperparameters for each algorithm since they are susceptible depending on those

parameters. Another thing to test would be a different reward mechanism.

The main contribution of this work is the implementation of a model to evaluate the use

of machine learning techniques and technology trends in networking. Specifically, the Service

Function Chaining has several applications in 5G systems, data centers, and other networks.
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Also, another contribution was a paper with the initial results published in the ENIAC (Encontro

Nacional de Inteligência Artificial e Computacional) (JÚNIOR; BIANCHI, 2021). That helped

to demonstrate the relevance of this research.

From the issues raised from this work, there are some suggestions for future works to

address them. For example, the experiments focused onDeepQ-Learning and its variants known

as Value-based methods. Then a possible improvement is to test other algorithms based on

Policy Gradient, such as REINFORCE or methods that combine value and policy methods. For

instance, Advantage Actor-Critic (A2C), Proximal Policy Optimization (PPO), and Soft Actor-

Critic (SAC). Other possibilities are using different network metrics as state variables, such as

memory occupation, CPU load, and delay. That would help deploy a complete agent to improve

packet loss performance.

From the network perspective, a possible change is using a dedicated SDN Controller,

the OpenDayLight (OPENDAYLIGHT, 2021). It uses specific APIs to interact with the Python

libraries, making the interaction between the agent and the environment more accessible. Besi-

des, applying Docker (DOCKER, 2021) containers and Kubernetes (KUBERNETES, 2021) as

cloud orchestrator would align with the cloud’s newest technologies, even by 5G networks.
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