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ABSTRACT

One of the most important challenges of the scientific community is to mitigate the several

consequences for neonates due to pain exposure. This challenge is mainly justified by the fact

that neonates are not able to verbally communicate pain, hindering the correct identification

of the presence and intensity of this phenomenon. In this context, several clinical scales have

been proposed to assess pain, using, among other parameters, the facial features of the neonate.

However, a better comprehension of these features is yet required, since some recent results

have shown the subjectivity of these scales. Meanwhile, computational frameworks have been

implemented to automate neonatal pain assessment. Despite their impressive performances, these

frameworks still lack to understand the corresponding decision-making processes. Therefore, we

propose to investigate in this dissertation the facial features related to the human and machine

neonatal pain assessments, comparing the visual perceived regions by health-professionals

experts and parents of neonates with the most relevant ones extracted by eXplainable Artificial

Intelligence (XAI) methods using two classification models: (i) VGG-Face, trained originally

in facial recognition, and (ii) N-CNN, implemented and trained end-to-end for neonatal pain

assessment. Our findings show that the regions used by the classification models are clinically

relevant to neonatal pain assessment, yet do not agree with the facial perception of health-

professionals and parents. Consequently, these differences suggest that humans and machines can

learn with each other in order to improve their current decision-making process of identifying the

discriminant information related to neonatal pain. Additionally, we observed that, using the same

classification model, the XAI methods implemented here yield distinct relevant facial features to

the same input image. These results raise concerns about the effective use and interpretation

of XAI methods, and, more importantly, what regions of the image are truly relevant to the

decision-making process of the classification model. Nevertheless, our findings advance the

current knowledge on how humans and machines code and decode the neonatal facial response

to pain. We believe that these findings might enable further improvements in clinical scales

and computation tools widely used in real situations, whether based on human or machine

decision-making process.

Keywords: Neonatal Pain Assessment. Human Visual Perception. Explainable Artificial

Intelligence.



RESUMO

Um dos mais importantes desafios da comunidade científica é mitigar as diversas consequências

à exposição da dor em neonatos. Este desafio é principalmente justificado pelo fato de que

neonatos não são capazes de verbalizarem dor, dificultando a correta identificação da presença e

intensidade deste fenômeno. Neste contexto, diversas escalas clínicas têm sido propostas para

avaliar dor, usando, entre outros parâmetros, as características faciais do neonato. Entretanto,

uma melhor compreensão dessas caracterísitcas é ainda necessária, visto que resultados recentes

demonstraram a subjetividade destas escalas. Enquanto isso, metodologias computacionais têm

sido implementadas para automatizar a avaliação da dor neonatal. Apesar de terem desempenho

expressivo, estes métodos não permitem a compreensão dos seus processos de tomada de

decisão. Portanto, esta dissertação investiga as características faciais relacionadas a avaliação

de dor neonatal humana e computacional, comparando as regiões visualmente observadas por

profissionais de saúde e pais de neonatos com as características mais relevantes extraídas por

métodos de Interpretação de Inteligência Artificial (IIA) utilizando dois modelos de classificação:

(i) VGG-Face, treinada originalmente em reconhecimento facial, e (ii) N-CNN, implementada e

treinada especificamente para a avaliação de dor neonatal. Os resultados obtidos mostram que as

regiões utilizadas pelos modelos de classificação são clinicamente relevantes para a avaliação de

dor neonatal, porém, não concordam com a percepção facial de profissionais de sáude e pais.

Consequentemente, essas diferenças sugerem que humanos e máquinas podem aprender entre

si de forma a melhorar seus atuais processos de identificar as informações discrimimantes da

dor neonatal. Adicionalmente, foi observado que, utilizando o mesmo modelo de classificação,

métodos distintos de IIA geram diferentes extrações de características para a mesma amostra de

imagem de entrada. Estes resultados geram preocupações sobre o efetivo uso e interpretação

desses métodos, e, mais importante ainda, quais são as regiões faciais realmente relevantes

para o processo de tomada de decisão do modelo computacional. Não obstante, os resultados

obtidos avançam o conhecimento atual em como humanos e máquinas codificam e decodificam a

resposta facial à dor por neonatos. Estes achados podem permitir o futuro melhoramento das

escalas clínicas e ferramentas computacionais utilizadas vastamente em situações reais, sejam

esses métodos baseados em decisões humanas ou de máquina.

Palavras-chave: Avaliação de Dor Neonatal. Percepção Visual Humana. Interpretação de

Inteligência Artificial.
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1 INTRODUCTION

Pain is a sensory phenomenon experienced by human beings that acts as an indicator and

alert for several unpleasant experiences (DIATCHENKO et al., 2007). This phenomenon might

reveal the presence of tissue damage or even a threat to life, triggering degrading physiological

and psychological reactions (DIATCHENKO et al., 2007). Also, the constant presence of pain

increases the suffering of a certain individual and also results in the reduction of their life span

(DIATCHENKO et al., 2006). Consequently, the subject that experiences pain tends to perform

an act of escape and withdrawal from the source of this phenomenon (DIATCHENKO et al.,

2007). But if pain does occur, the assessment and correct treatment are mandatory for the healthy

development of human beings.

Neonates specifically are the primary priority for the continuity of human beings and also

for the ongoing evolution of human capital and economic growth (DARMSTADT; SHIFFMAN;

LAWN, 2015). Yet, critically ill or preterm babies experience numerous painful procedures

during their stay in a Neonatal Intensive Care Unit (NICU) of hospitals (SIMONS et al., 2003;

CRUZ; FERNANDES; OLIVEIRA, 2016). These painful experiences can cause degrading

effects in the short-, medium-, and long-term in the neonate’s life, like, at an early stage of life,

irritability and dietary denial (HEIDERICH; GUINSBURG; LESLIE, 2013), but also, it can

affect the development of the neonatal brain, leading to disabilities in learning and cognitive

tasks (DOESBURG et al., 2013; VINALL et al., 2014; GRUNAU, 2020).

Since neonates are not able to communicate and verbalise pain, several clinical scales

have been developed in order to assess pain. These scales mainly use facial expression and its

characteristics to recognise the presence of pain (CARLINI et al., 2021b). Although these scales

have clinical validity and are used in real situations at NICUs, they are subjective, generating

results that may vary according to the characteristics of the patient, the person who performs

the assessment, and the environment where both are located (CASSIA XAVIER BALDA;

GUINSBURG, 2007). Consequently, the difficulty in identifying and quantifying neonatal pain

and the subjectivity of this assessment are an important challenge for the scientific community in

general (SOARES et al., 2021).

1.1 MOTIVATION

As mentioned by Salekin et al. (2021a) and Soares et al. (2021), one of the most important

challenges of the scientific community is to mitigate the several consequences for neonates due
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to pain exposure. Although pain clinical scales have been proposed to identify this phenomenon

and use, among other parameters, the assessment of the facial features of neonates (CARLINI

et al., 2021b), a better understanding of these features and their discriminative information is

yet required, since some recent results have shown the subjectivity of these proposed methods

(CARLINI et al., 2020; SOARES et al., 2021; SILVA et al., 2021; BARROS et al., 2021).

In this context, the use of Artificial Intelligence (AI) models allows a non-invasive

investigation that is accurate and specific to the pain phenomena felt by neonates. Specifically,

eXplainable Artificial Intelligence (XAI) techniques are able to explain the decision-making

process that leads an AI model to a particular answer, allowing a better comprehension of

such models. This need is also justified by the increasing use of these techniques in medical

applications, where reliability and safety are mandatory. Recently, Velden et al. (2021) presented

a systemic review of works that used deep learning-based XAI in medical image analysis,

categorising their explanation method into three types: visual, textual, and example-based. As

shown by the authors, the most common type of medical image analysis is based on visual

explanation (VELDEN et al., 2021), presenting frameworks to many anatomical locations of

the human body: bladder, brain, breast, cardiovascular, chest, dental, eye, female reproductive

system, gastrointestinal, skin, and others. In a different context, Schiller et al. (2020) proposed the

analysis of data collected during eye-tracking experiments comparing it with the regions extracted

by an AI model when classifying the facial expression of adults (e.g., “neutral”, “happy”, “fear”,

etc). This work showed the feasibility of comparing facial features extracted by AI models with

the ones observed by human beings.

1.2 OBJECTIVE

The main goal of this dissertation is to investigate the facial features related to the human

and machine neonatal pain assessment, comparing the facial information perceived by experts

(physicians) and parents of neonates with the most relevant features of two state-of-the-art AI

models. The first model was originally trained on facial recognition, whereas the second one was

trained end-to-end on neonatal pain assessment. Then, we use XAI methods in order to extract

the discriminating regions of neonatal face images, disclosing a better understanding of these

often called “black box” models. Specifically, our main research questions are:

a) What are the facial regions most relevant to an AI-based model?

b) Using the same AI-based model, do distinct XAI methods agree with each other?
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c) Does an AI-based model agree with the facial perception of Experts and Parents of

neonates?

d) Is there any difference in the agreement between sample groups when comparing

the perception towards “pain” and “no pain” images?

We believe that with such analysis, we may identify the differences between humans and

machines towards their facial processing when assessing neonatal pain, allowing an improvement

of the methods currently being used in the clinical practice, and also of the decision-making

process performed by AI models.

1.3 OUTLINE OF THE DISSERTATION

This dissertation can be summarised as follows.

In Chapter 2, we describe several works related to neonatal pain of the medical and

computational communities. These studies highlight the current clinical understanding of how

neonates experience pain, and its consequence on their development and well-being. Also, some

of these works investigated how neonates express painful sensations and how adults interpret

these responses. Afterwards, we present several computational frameworks to automatically

assess neonatal pain.

In Chapter 3, we present our methodology to compare the facial features observed by

adults and the ones extracted by AI models to assess neonatal pain. Firstly, we introduce two face

image datasets that were used in previous works to develop our framework. Then, we describe

our classification models and the XAI methods we used to understand them. Lastly, we detail the

perceived facial area extraction, and the image comparison metrics that we used to evaluate the

agreement between XAI methods and humans.

In Chapter 4, we show our qualitative and quantitative results, discussing them in order

to address our main research questions. Our findings show novel results on the human and

machine facial perception when assessing pain, enabling future improvement of clinical scales

and computational frameworks.

Finally, in Chapter 5, we conclude this dissertation and discuss the impact of our results

regarding the current paradigms of the clinical and computer communities. Additionally, we

describe possible future work in order to further investigate the differences between the facial

perception of adults and machines.
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2 RELATED WORKS

Until the 1970s, there was still no clear definition of human pain. Earlier understanding

of pain assumed that this experience could be caused by any cognitive or physical stimulation

(OWENS, 1984). It all changed when Merskey (1970) stated that ‘Pain is an unpleasant experience

which we primarily associate with tissue damage or describe in terms of such damage or both’.

However, this definition assumes that the person suffering pain is able to verbally describe such

a phenomenon, which infants until a certain age are not capable of doing so. Consequently,

physicians and caretakers assumed that infants were not able to feel and suffer pain.

In 1983, Beyer et al. (1983) also observed this assumption when investigating the effective

use of analgesics for the relief of pain in adults and children. The results showed that infants,

children, and teenagers (between the ages of 1 day and 15 years old) received fewer prescription

of potent narcotics than adults (BEYER et al., 1983). In fact, almost all the drugs prescribed

to neonates immediately post-operatively were discontinued in the 5th day after surgery, even

though the prescriptions were still available. The authors argued that research regarding children’s

pain tolerance and perception was still ambiguous, since parallel studies had shown that time

disagreement about the correlation between pain measure and age (HASLAM, 1969; WOODROW

et al., 1972). Additionally, they noted that the reluctance of health professionals regarding

overdose, addiction, and respiratory depression often led to doubts about the necessity of analgesic

administration. Beyer et al. (1983) was one of the first studies to propose that health professionals

must consider the possibility that children may feel pain as intensely as adults, and that the

primary difference between the two may be in the accuracy and maturity of their expressions of

pain.

This shows that the comprehension of children’s pain and, more specifically, neonatal pain

and its assessment and treatment is a continuous area of research within the medical scientific

community. Although remarkable progress was achieved since the early 1980s, there are concerns

that still need to be addressed, specifically about the expressiveness of the neonatal pain and

how adults perceive this phenomenon. Meanwhile, studies carried out by computer scientists

proposed several frameworks to automatically assess neonatal pain (BRAHNAM et al., 2006,

2007; HEIDERICH; LESLIE; GUINSBURG, 2015; TERUEL et al., 2018; ZAMZMI et al., 2019;

SALEKIN et al., 2020, 2021b; CARLINI et al., 2021a). However, except for Heiderich, Leslie,

and Guinsburg (2015), these works tackled this problem from either a Medical or Computational
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perspective rather than interdisciplinary combining knowledge from the clinical practice to

automated models.

In this context, this chapter describes the main works regarding neonatal pain from

both scientific communities: medicine and computer science. We close this chapter with our

understanding about the current research directions. These works were found on Google Scholar

using the following keywords: “neonatal pain assessment”, “neonatal pain facial perception”,

“machine learning on neonatal pain assessment”, “automated neonatal pain assessment”, and

“explainable artificial intelligence on neonatal pain assessment”. We considered publications

with relevant number of citations, regardless of publication date.

2.1 MEDICAL STUDIES ON NEONATAL PAIN

At the end of the 1980s, Anand, Hickey, et al. (1987) provided one of the first literature

reviews regarding neonatal pain, covering the functional requirements of neonates for pain

perception, the physiologic changes associated with pain, the memory of pain and its behavioural

changes. Additionally, the authors proposed the use of the biologic term “nociceptive activity”

instead of the subjective term “pain”, since the latter is often related to emotional or cognitive

state (ANAND; HICKEY, et al., 1987).

Basically, Anand, Hickey, et al. (1987) described studies that show that neural pathways

for pain may be traced from sensory receptors in the skin to sensory areas in the cerebral cortex

of newborn infants. These nerves present endings in the skin with similar (or greater) density

when compared to endings in adult skin. Beginning with the development of synapses between

sensory fibres and interneurons in the dorsal horn of the spinal cord during the sixth week of

gestation, the spread of cutaneous receptors starts from the perioral area of the human fetus in

the 7th week of gestation, then, it spreads to the hands and feet by the 11th week, to the trunk by

the 15th week and all cutaneous and mucous surfaces by the 20th week. On top of that, several

researchers suggested in the 1980s that the complete nervous system is active during prenatal

development and that detrimental and developmental changes in any part would affect the entire

system1. Well-defined periods of quiet sleep, active sleep, and wakefulness occur in utero as

early as at 28 weeks of gestation, showing that the preterm and full-term babies have various

cognitive, coordinating, and associative capabilities in response to visual and auditory stimuli

(ANAND; HICKEY, et al., 1987).
1To further studies and discussion about the neurophysiology and neurochemical systems related to neonatal

pain, see Anand, Hickey, et al. (1987) and Anand and Carr (1989).
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Regarding physiologic changes, the pioneering work of Anand, Hickey, et al. (1987) firstly

debated over the cardiorespiratory ones. Preterm and full-term neonates during and after a painful

procedure (e.g., circumcision or heel lancing) showed increased heart rate and blood pressure.

The heart rate variability was related to the intensity and duration of the painful stimulus and to

the subjective behaviour of the neonate. Although local anaesthesia prevented these changes in

full-term neonates during procedures, the same did not help to alleviate pain in preterm babies.

It was also observed that a decrease in transcutaneous partial pressure of oxygen occurred during

circumcision, but local analgesic agents prevented these changes. On hormonal and metabolic

changes, Anand, Hickey, et al. (1987) stated that preterm and full-term babies who underwent

surgery under minimal anaesthesia showed increased release of growth hormone, cortisol, and

other corticosteroids. Also, due to suppression of insulin secretion, neonates experienced a severe

and prolonged hyperglycaemia. Although the duration was shorter, neonatal stress responses

after painful procedure without deep anaesthesia administration were found to be three to five

times greater than adults’ response. Neonates with potent anaesthetics administration were more

clinically stable during surgery and had fewer postoperative complications than neonates under

minimal anaesthesia.

Anand, Hickey, et al. (1987) also reviewed studies that investigate the memory of pain in

neonates. They reported that, after painful procedure, neonates showed persistence of specific

behavioural changes, suggesting the presence of memory. These behavioural changes may, in

the short-term, disrupt the adaptation of newborn infants to their postnatal environment, the

development of parent-infant bonding, and feeding schedules, while, in the long-term, it could

possibly lead to psychological sequelae. Anand, Hickey, et al. (1987) highlighted as well that,

even though pain itself cannot be remembered, the experience associated with it can be recalled,

as it should, since “painful experience may not be deemed important if it is not remembered”.

These behavioural changes can be motor responses, crying, state response (sleeping or

awake), and changes in facial expressions. Premature neonates presented lower thresholds for

a flexor response and increased sensitisation after repeated stimulation. The reviewed studies

reported that full-term babies tend to flex and adduct during the “pinprick in the leg” procedure.

Regarding crying, the patterns of it have been correlated with the intensity of pain experienced

during circumcision. About the neonate’s state, studies observed increased wakefulness and

irritability for an hour after circumcision and altered sleep-wake state in neonates undergoing

heel-stick procedures. It was also found that, for two days after circumcision, neonates who had

received anaesthetics were more attentive to various stimuli and had greater orientation, better
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motor responses, decreased irritability, and a greater ability to quiet themselves when disturbed.

This suggests that neonates may suffer prolonged effects on the neurological development. Anand,

Hickey, et al. (1987) also depicted some studies on the facial expression related to pain. Their

initial findings showed that distinct neonatal facial expressions can be discriminative in pain

assessment as well, and may be altered by the behavioural state of the neonate.

In 1999, Guinsburg (1999) estimated that a neonate in a NICU receives from 50 to 150

painful procedure per day. Regarding neonates under 1 kg, this number can increase to over 500

painful procedures. Specifically on this topic, Southall et al. (1993) observed earlier that, in a

cohort of 55 patients, 181 painful procedures were carried out, and 50 of them had been done

without analgesia or sedation. Southall et al. (1993) also noted that the longer the stay, more

painful procedures were performed . These results highlight the need for reliable pain assessment

tools to be used in clinical situations.

To this end, Grunau introduced the Neonatal Facial Coding System (NFCS) (GRUNAU;

CRAIG, 1987). The proposed system was based on the Facial Action Coding System (FACS)

approach (P.; FRIESEN, 1978) with adaptions for coding babies’ faces (OSTER, 1978). Using the

NFCS, participants of the experiment carried out by Grunau identified that, following heel-lance

which is an invasive and painful procedure, neonates early in the second day of life showed a

number of facial changes, namely eye squeeze, brow contraction, nasolabial furrow, taut tongue,

and open mouth, that differed substantially from the amount and type of facial action provoked by

heel-rub, a distressful but not painful procedure. Also, Grunau and Craig (1987) observed that

the current behavioural state (sleep or awake) of the neonate affects its pain expression. Infants

quietly sleeping showed the least facial reaction and the longest latency to cry. Overall,this

pioneering work was the first to establish specifically that facial features are a reliable and useful

measure of pain expression (GRUNAU; CRAIG, 1987).

Few years later, Grunau, Johnston, and Craig (1990) carried out a new experiment with

recently born neonates (mean age of 2.2 hours) when facing: an injection of vitamin K (invasive

and painful procedure), application of a disinfectant solution to the stub of the umbilical cord,

and rubbing the thigh with an alcohol swab (both non-invasive and distressful). Similarly to

the previous study, volunteers using the NFCS identified that specific facial actions, such as

brow bulging, eyes squeezed shut, deepening of the nasolabial furrow, and open mouth, were

associated more frequently with the invasive procedure. Additionally, some neonates did not cry

during painful procedures, but it occurred in response to non-painful events, raising doubt about

this behavioural change as a reliable and solely source to identify pain.
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Subsequently, Craig et al. (1994) investigated the correlation between the NFCS and

FACS. Since the former is a subset of facial features of the latter, the authors were concerned

if the NFCS would yield an incorrect interpretation of the infant expression of pain that would

be better described using FACS. The results demonstrated that the NFCS captures correlated

features to the FACS. However, the NFCS presents significant advantages over the FACS due

to its simpler and less complex set of features to be learned and mastered. Also, these results

highlight the fact that the facial expression of pain of adults and neonates is similar, consequently,

endorsing the argument that infants are born with the capacity to experience and express pain

(CRAIG et al., 1994).

Later on, Guinsburg (1999) reviewed the other following neonatal pain scales that were

proposed and validated in clinical situations: Neonatal Infant Pain Scale (NIPS) (LAWRENCE

et al., 1993), Postoperative Pain Measurement Score (CRIES – Crying, Requires O2 for saturation

above 90%, Increased vital signs, Expression, and Sleeplessness) (KRECHEL; BILDNER, 1995),

and the Premature Infant Pain Profile (PIPP) (STEVENS et al., 1996). Differently from the

NFCS, these are multimodal scales, including the analysis of the facial expression, cry, body

motion, behavioural state and physiological signs.

In more details, the NIPS is composed of the observation of the presence of cry (1 point:

whimper; 2 points vigorous cry), change of breathing (1 point: irregular, gagging or breath

holding), flexed/extended arms or legs (1 point), fussy state of arousal (1 point), and facial

expression (1 point: grimace). Pain is present if the total score is over 3 (LAWRENCE et al.,

1993). The NIPS is recommended to assess acute procedural pain in infants less than 1-year-old.

As its name suggests, CRIES is based on the analysis of the crying, oxygen saturation,

vital signs, facial expression and sleeplessness (KRECHEL; BILDNER, 1995). Each feature has

a score that ranges from 0 to 2. Experimental results showed that the assessment of pain had a

median score of 4. It should be noted that, differently from the other scales, CRIES is meant to

be used in postoperative monitoring of neonates not intubated and paralysed.

The last pain scale investigated (GUINSBURG, 1999) PIPP assesses acute pain in preterm

and term neonates (STEVENS et al., 1996). Fewer gestational weeks lead to higher score for each

of the analysed characteristics. The caretaker perceives the neonate for 15 seconds, annotating

the heart rate and oxygen saturation, and the behavioural state (quiet/active, sleep/awake, facial

movements and crying). Then, for the next 30 seconds, the caretaker must distinguish if the

neonate presents an increase in heart rate and a decrease in the oxygen saturation. Also, the
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caretaker must observe the neonate’s brow, eye and nasolabial furrow. For a more detailed

description of this scoring, see Stevens et al. (1996).

In 2006, Hummel and Dĳk analysed the challenges in behavioural pain assessment,

given the enormous progress achieved in the 1990s and early 2000s (HUMMEL; DĲK, 2006).

According to the authors, behavioural and even physiological changes may occur during non-

painful, but distressful scenarios. The difference between these two behavioural states is difficult

to identify, since painful situations are also distressful, but not all experiences of distress are

pain related, such as hunger, maternal deprivation and ventilatory factors. The authors also

observed that sedative administration and neuromuscular blocking agents can mitigate or inhibit

the behavioural expression of pain (HUMMEL; DĲK, 2006). In fact, all the aforementioned pain

scales are based on the behavioural changes in terms of a normal baseline, consequently, their use

may be unreliable in such situations. Likewise, severity of illness might also decrease the infant’s

ability to exhibit pain signals (HUMMEL; DĲK, 2006). According to the authors, preterm

neonates are unable to communicate pain behaviourally as readily as term infants, and may

present decreased behavioural and increased physiological response to heel-stick after recurrent

painful procedures (HUMMEL; DĲK, 2006). Specifically analysing multimodal scales that

include behavioural and physiological pain assessment, Hummel and Dĳk (2006) referenced

adult studies which suggest that there is no correlation between both indicators. Even when adults

are behaviourally stable due to sedation, physiological reactivity to tissue damage still occurs.

More broadly, both indicators might not be correlated across distinct age groups or patients

with different diseases (HUMMEL; DĲK, 2006). It is noteworthy that the behavioural and

physiological features of the CRIES and PIPP present the same relevance to its composite score.

Another equally important challenge is the assessment of ongoing or chronic pain (HUMMEL;

DĲK, 2006). The scales previously described aim to assess characteristically acute procedural

pain. The identification of pain expression during these situations is complicated by non-specific

behavioural response, turning coding systems unfeasible. Therefore, the clinical, but subjective,

judgment is the sole source to determine the causality of the behaviour (HUMMEL; DĲK, 2006).

Even though there were concerns about acute, ongoing/prolonged, and chronic pain, its

clear definitions to neonates were not established until recently. In 2017, Anand (2017) stated

that few methods to assess the intensity of prolonged and chronic pain were proposed, but due to

the absence of precise definitions, other aspects related to chronic pain have not been dealt with,

such as duration, periodicity and secondary effects. Furthermore, Anand (2017) reviewed that

only 10% of neonates in NICU received daily clinical assessments for prolonged and ongoing
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pain. Anand’s work suggests that this is due to scarce clinical examples of ongoing pain. The

author also states that most clinicians can easily assess the presence of prolonged or chronic

pain in specific situations, but there is still a need for developing the taxonomy of pain terms

dedicated for neonates. To this end, Anand (2017) proposed, as a starting point for defining pain

in newborns, the following features: temporal, character of pain, secondary effects and response

patterns.

According to Anand (2017), the beginning and duration define any painful experience,

therefore, differentiating acute and non-acute pain. Acute pain occurs with the onset of

tissue damage, and it usually lasts during the painful stimulus (or for brief periods thereafter).

Meanwhile, chronic pain depends on further characteristics, such as the length of the neonatal

period, development of long-term effects of pain, and tolerance to analgesia. With this in mind,

Anand (2017) stated that pain lasting longer than a week shall be defined as chronic pain in

neonates. Prolonged or persistent pain duration ranges from one hour to seven days.

Regarding the character of pain, there are two features specific to the developing nervous

system (ANAND, 2017). Firstly, the immaturity of the central and peripheral nervous systems has

lower activation, excitation, and transmission thresholds to nociceptive stimuli when compared

to older ages. Also, stimulation of the receptive field in the spinal cord heightens nociceptive

signalling and can evoke a long-lasting excitability within it. Only during infancy, the inhibitory

signalling in the spinal cord is developed. These features make clinicians attempts to localise pain

in neonates to result in failure, while increasing the chances of secondary effects. As such, acute

pain is sharp and well-localised, and prolonged and chronic pain is majorly dull and diffusely

localised (ANAND, 2017).

Tissue damage or inflammation causes secondary effects, such as hyperalgesia and

allodynia (ANAND, 2017). Hyperalgesia is the increased pain to a stimulus that is normally

painful, and allodynia is the pain due to stimuli that rarely provoke pain. Anand (2017) reviewed

some studies that suggest hyperalgesia after heel lances, venipuncture and abdominal surgery,

but further information is still scarce. With respect to allodynia, some studies show that preterm

neonates appear to suffer it, presenting similar responses to painful and non-painful stimulus

(HOLSTI et al., 2005; SLATER et al., 2010; FABRIZI et al., 2011; CORNELISSEN et al., 2013).

Anand (2017) declares that standardised tests for allodynia need to be developed and validated.

Anand (2017), also observed that behavioural and physiological responses are well-defined

for acute pain. However, studies related to prolonged or chronic pain presented assessment
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methods with overlapping features and different from acute pain. Some physiological and

behavioural responses may not occur during prolonged or chronic pain.

More recently, Williams and Lascelles (2020) reviewed the current comprehension of

the consequences of pain exposure at early life. Mainly, these situations occur due to diagnostic

procedures (heel stick, venipuncture, retinopathy of prematurity exam, etc), therapeutic procedures

(chest physiotherapy, tracheal intubation/extubation, etc) and surgical procedures (circumcision,

cardiac surgery, etc). The number of procedures is also correlated with the length of stay in the

NICU. And it is more concerning to preterm babies, since the average length of stay is 81 days,

while term neonates present an average length of 5 days. Additionally, Williams and Lascelles

(2020) observed that the demographics of the NICU are predominately composed by premature

newborns (72.3%) when compared to term newborns (27.7%). Yet, Williams and Lascelles

(2020) reviewed studies that show that still most neonates receive none (or inadequate level of)

analgesia. These factors can cause negative long-term effects on neonates related to cognitive

impairments, psychosocial dysfunction, increased pain sensitivity and poor health outcomes.

As shown by Williams and Lascelles (2020) as well, painful procedures in early life

are associated with a brain response reduction to non-painful stimulus. Prematurity seems

to aggravate this deficiency too. Furthermore, these procedures can negatively affect brain

growth, resulting in lower intelligence, language and attention deficits, poor visual-motor

functions, and poor behavioural outcomes. For preterm neonates, these outcomes may persist

into adolescence and young adulthood. Males appear to be at a greater risk than female preterm

babies (WILLIAMS; LASCELLES, 2020).

Regarding psychosocial dysfunction, Williams and Lascelles (2020) additionally analysed

that early repetitive pain may cause attention deficit disorders and atypical behaviours, such

as hypervigilance and exaggerated startled responses. Neonates may suffer from internalising

behaviours, leading to depression and anxiety and, ultimately, greater social difficulties. Preterm

neonates have a greater chance of presenting internalising behaviours.

Williams and Lascelles (2020) reported also that early pain is associated with hyper-

sensitivity later in life. This effect is increased in extremely preterm neonates who underwent

prior surgery. Following secondary painful stimuli, neonates with a history of pain may present

increased heart rates and lower oxygen saturation (WILLIAMS; LASCELLES, 2020). This work

investigated subsequent poor health outcomes. Increased chances of diabetes, hypertension and

high blood pressure later in life are associated with preterm neonates which experienced early
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pain, exposing them to cardiovascular diseases and stroke. Moreover, adults with these health

conditions are more likely to suffer from chronic pain.

2.1.1 Facial Perception of Pain

Since facial features are assessed in the majority of pain scales used by health professionals

during clinical training and practice, we complement this clinical review with works that

specifically investigated the facial perception of adults when assessing neonatal pain.

One of the first works on the adults’ facial perception of the neonatal response to pain

is from Balda et al. (2000). Specifically, the authors investigated whether health professionals

and parents could recognise the “pain” image within a set of photos of neonates. Each adult

observed 3 sets of 8 images (1 photo taken after heel puncture and the remaining ones during rest,

light stimulus and heel friction). The authors screened all pictures with the NFCS and only the

photos shot after heel puncture scored over 3 were classified as “pain”. Regarding the first set of

pictures, health- and non-health professionals presented similar accuracy to identify the correct

photo of pain. However, non-health professionals were more accurate in recognising the photo of

neonatal with pain in the second and third set. The authors suggested that health professionals,

with more theoretical knowledge and professional experience, may underestimate the pain of

their patients and, consequently, modify their facial perception when assessing neonatal pain

(BALDA et al., 2000).

More recently, we proposed a novel computational framework using eye-tracking technol-

ogy to investigate the human facial perception related to neonatal pain assessment (CARLINI et al.,

2020). Our experiments collected visual data from 44 physicians, 40 healthcare professionals,

29 parents, and 30 laypersons when observing 20 images of neonates during rest and after a

painful procedure. Additionally, for each assessment, each participant verbally assigned a pain

score, ranging from 0 (no pain) to 10 (extreme pain). To categorise these evaluations, numerical

scores greater than or equal to 3 were classified as “newborn with pain” and scores less than 3 as

“newborn without pain” (CARLINI et al., 2020). We carried out all procedures at the Hospital

São Paulo of the Escola Paulista de Medicina of the Universidade Federal de São Paulo.

These preliminary results showed that all groups of volunteers have a disagreement

regarding the intensity of pain, with a high variance of the assigned scores (CARLINI et al., 2020).

For images of neonates at rest, the scores were concentrated close to zero. When comparing

distinct sample groups, physicians and health professionals showed higher accuracy than parents
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and laypeople to correctly identify the absence of pain and slightly better to identify its presence.

Holistically analysing the facial perception of these groups, there was a general interest in the

regions of eyes, nose, and mouth. Specifically analysing the areas of the already described NFCS

(GRUNAU; CRAIG, 1987; GRUNAU; JOHNSTON; CRAIG, 1990), no apparent difference

was identified in the facial perception of these adults. In other words, physicians and health

professionals with clinical training showed similar holistic facial perception to adults without

clinical practice (CARLINI et al., 2020).

Subsequently, Soares et al. (2021) proposed a feature-by-feature analysis to discriminate

the gaze of health professionals and non-professionals. Both groups of volunteers showed holistic

facial perception, but with subtle differences. Health professionals looked more at the regions of

the mouth and nasolabial furrow and less at the eyes and forehead. Moreover, the correlation of

gaze between these groups was almost perfect given the number and time of fixations for all the

facial regions analysed, except for the number of fixations in the nasolabial furrow (SOARES et al.,

2021). These results highlight and agree with our findings (CARLINI et al., 2020), indicating the

homogeneity of adults’ facial perception when assessing pain in neonates, regardless of clinical

training or experience.

Silva et al. (2021) investigated the differences in physicians’ gaze when classifying as well

pain and non-pain images of neonates. The authors identified that physicians looked for a greater

number of times at the mouth, eyes, forehead, than to the nasolabial furrow when analysing pain

images. Regarding the time of fixation at each facial feature, physicians looked for a longer

period at the mouth, eyes, forehead, and less at the nasolabial furrow when observing images of

neonates after a painful procedure. Analysing the time of fixation in each facial feature, each

additional second of gaze in the mouth and forehead increased the chance of correctly identifying

moderate or severe pain (SILVA et al., 2021). Silva et al. (2021) hypothesised that the gaze in

these regions is related to the detection of discriminant signals, with an unconscious emotional

response on an affective-cognitive level as a consequence of past experiences.

Differently from previous works, Barros et al. (2021) proposed the use of a latent class

analysis technique (DE LA TORRE, 2011) to investigate differences in the adult facial perception.

In this way, all volunteers of the experiments (CARLINI et al., 2020) were divided into: adults

who correctly identified the presence and absence of pain (class YY), those who correctly

classified only the presence of pain (YN), those who correctly classified only the absence of

pain (NY), and, finally, those who did not correctly identify any newborn image (NN). The

evaluations of images of neonates in pain were considered correct when the adult attributed a
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score greater than or equal to 6. For the images of neonates at rest, only the scores less than or

equal to 2 were considered correct (BARROS et al., 2021). Similar to the previous results, all

classes presented a higher concentration of gaze on the forehead, eyes, and mouth, rather than

on the nasolabial furrow. However, adults who correctly identified the presence and absence of

pain (class YY) presented a higher number and time of fixation at the nasolabial furrow. In other

words, each additional fixation in this region resulted in a greater chance of belonging to class

YY. The authors also identified that being a health professional increases the probability of being

class YY (BARROS et al., 2021).

We presented very recently a systematic review of several clinical scales for the classifi-

cation of pain in newborns (CARLINI et al., 2021b; TAMANAKA et al., 2022). In particular,

we proposed a comparative analysis of the importance of each facial region for these same

scales and for adult facial perception (TAMANAKA et al., 2022). Using the Kendall correlation

(KENDALL, 1938), we identified that the facial features proposed by the literature do not have the

same relevance as the regions observed by adults, such as the nose and cheeks. Furthermore, when

applying this same correlation in a comparison between groups of participants, physicians, and

health professionals showed a higher correlation with each other than with parents or laypeople

(TAMANAKA et al., 2022).

2.2 COMPUTATIONAL FRAMWEWORKS TO NEONATAL PAIN ASSESSMENT

To the best of our knowledge, Brahnam et al. (2006) was the first work to approach

neonatal pain assessment through a machine learning framework. The authors created the iCOPE

dataset, used here and fully described in Section 3.1.2, to perform their experiments, labelling

the photos taken during painful procedure as “pain”, and the pictures taken during air puff,

crying, friction of the heel and resting as “no pain”. The proposed framework comprehends a

preprocessing stage, a feature extraction one, and, then, the classification.

During preprocessing, the authors converted each image to grey scale, rotated, cropped

and scaled, aligning the eyes along the same axis. Additionally, the region of the face was

centred within an ellipse. The pixels within it resulted in a feature vector. The authors applied

Principal Component Analysis (PCA), extracting the most relevant features of the obtained

vector dataset (JOLLIFFE; SPRINGER-VERLAG, 2002; FUKUNAGA, 2013). Support Vector

Machine (SVM) (BOSER; GUYON; VAPNIK, n.d.; CRISTIANINI; SHAWE-TAYLOR, et al.,

2000) classified the input as “pain” or “no pain”.
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Brahnam et al. (2006) carried out several tests with different kernels to the SVM. Their

experimental results ranged from 70.00% accuracy with the Radial Basis Function (RBF) kernel

to 88.00% with a polynomial kernel of third degree. Moreover, PCA showed to be an important

step of the framework, increasing the accuracy from 85.75% to 88.00% and reducing the testing

time per image from 0.00780s to 0.0008s to the SVM with a polynomial kernel of third degree.

The authors did not apply any statistical significance test in the results.

Following this pioneering work, Brahnam et al. (2007) proposed a more realistic training

protocol, named leave-one-subject-out, in which training sets did not include the subject of the

test set. Furthermore, the authors applied for the first time the Neural Network Simultaneous

Optimisation Algorithm (NNSOA) (SEXTON; DORSEY; SIKANDER, 2004) on a medical task.

The obtained results showed that the NNSOA outperformed the SVM, regardless of the

kernel. SVM with a linear kernel provided the best SVM classification rate of 82.35% accuracy,

while the NNSOA achieved 90.20% accuracy. Admittedly, these results did not present statistical

difference between them. However, as shown by the authors, NNSOA seemed to be more stable,

since it had the lowest standard deviation.

In both studies, Brahnam and collaborators did not investigate the performance of the

studied models using the F1 score (SASAKI et al., 2007) and the Area Under the receiver

operating characteristic Curve (AUC). These metrics are important for two main reasons: (1)

the iCOPE is not a balanced dataset, meaning that the number of “pain” samples is not equal to

“no pain”, and (2) it provides a better understanding of the generalisation and class-distinction

capabilities of the models, since it account precision, recall and false positive rate. These

capabilities are relevant to clinical situations because over- and under-treatment of pain can lead

to several consequences for the patient.

Almost a decade later, Heiderich, Leslie, and Guinsburg (2015) proposed a computational

framework based on the facial features of NFCS (GRUNAU; CRAIG, 1987; GRUNAU;

JOHNSTON; CRAIG, 1990). To this end, the authors also created the UNIFESP Face Image

Dataset, used here as well and fully described in Section 3.1.1. For each image of the dataset, the

authors identified 16 facial landmarks, related to the forehead, nasolabial furrow, and mouth, and

calculated the Euclidean distance between each one of them.

To discriminate “pain” from “no pain” images, the authors created a standard “no pain”

set of distances based on the photos of neonates during periods of rest. Similarly to the NFCS

(GRUNAU; CRAIG, 1987; GRUNAU; JOHNSTON; CRAIG, 1990), when the neonate of the test

image presented more than 3 facial features, this image was classified as “pain”. The proposed
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system achieved 85% sensibility and 100% specificity to “no pain” images and 100% sensibility

and specificity to “pain” images. Additionally, it should be noted that the authors implemented

the framework in hardware to be used in real clinical situations.

In 2018, Teruel et al. (2018) applied a statistical pattern recognition framework on the

UNIFESP Face Image Dataset. The framework, originally proposed by Thomaz et al. (2007),

enables a feature extraction analysis, allowing a better understanding of the features associated

with “pain” and “no pain” images, and it is composed of two main steps: (1) dimensionality

reduction using PCA (JOLLIFFE; SPRINGER-VERLAG, 2002; FUKUNAGA, 2013), and

(2) feature extraction and classification using the Maximum uncertainty Linear Discriminant

Analysis (MLDA) (FISHER, 1936; THOMAZ; KITANI; GILLIES, 2006). The last method

calculates the most discriminative hyperplane between each class of image. Therefore, it was

possible to navigate within each region and, when reconstructing the sample to its original

dimension (image size), to visualise the distinctions between classes.

Analysing the results, images classified as “pain” seem to be associated with the open

mouth and deep nasolabial furrow, showing agreement with the NFCS. Quantitatively, the mean

accuracy of the framework achieved 72.77%.

Figure 1 – Hyperplane navigation between “pain” and “no pain” images obtained using the
PCA+MLDA framework.

Source: Adapted from Teruel and Thomaz (2018).

More recently, Zamzmi and research collaborators achieved impressive results using

Convolution Neural Networks (CNNs) in neonatal pain classification (ZAMZMI et al., 2018,

2019; SALEKIN et al., 2021c).

Firstly, in Zamzmi et al. (2018), the authors proposed the Transfer Learning technique

in order to use a pre-trained CNN in a different task from the original one. The authors used 4

different CNNs architectures: 3 of them (VGG-F, VGG-M and VGG-S, proposed by Chatfield

et al. (2014)) were trained in object recognition, and the last one (VGG-Face, proposed by

Parkhi, Vedaldi, and Zisserman (2015)) was trained in facial recognition. Furthermore, the

authors created a new dataset with neonatal images classified as “pain” or “no pain” using NIPS

(LAWRENCE et al., 1993). The ZFace face detector algorithm extracted the corresponding
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face of each image of the dataset (JENI; COHN; KANADE, 2015). Then, the authors reshaped

the obtained images to 224x224, following the CNNs’ input size. For each CNN architecture,

the authors extracted the features from the last fully connected layer before the output layer

(high-level and more relevant to the original CNN’s task), and from the last convolutional layer

(low-level and generic features). The authors selected the most relevant features (5, 10, and

15 features) using the Relief-f and Symmetric Uncertainty (KIRA; RENDELL, 1992; HALL,

1999). The obtained samples were classified using Naive Bayes, k-Nearest Neighbours (k-NN),

SVMs, and Random Forests (RFs), as they had shown surprising performance with Transfer

Learning (BAR et al., 2015; PAUL et al., 2016; RASSADIN; GRUZDEV; SAVCHENKO, 2017;

SARGANO et al., 2017). Regarding the VGG-F, M, S architectures, VGG-S achieved the best

results with high-level features (90.41% accuracy and 0.742 AUC) and the VGG-F achieved the

best result with low-level features (87.13% accuracy and 0.713 AUC). Even though the accuracy

using high-level features is higher, the AUC difference was not statistically significant. To the

VGG-Face architecture, the use of high-level features achieved 90.34% accuracy (2.3% higher

than low-level features) and 0.841 AUC (not statistically significant).

Then, in Zamzmi et al. (2019), the authors proposed the first CNN architecture specifically

trained to neonatal pain assessment. The Neonatal Convolutional Neural Network (N-CNN)

is a cascaded CNN composed of three branches followed by convolutional, pooling and fully

connected layers. The first branch is composed of a single max pooling layer, capturing image-

specific information, whereas the second and third branches are composed of convolutional and

pooling layers, extracting generic information, such as edges and blobs. The features obtained in

each branch are merged and processed in another pair of convolutiona-pooling layer. A fully

connected layer and sigmoid layer performs the classification. The authors stated that they carried

out several experiments using different regular and cascades architectures, but the selected one

achieved the best results (ZAMZMI et al., 2019). Using a private dataset (ZAMZMI et al., 2019)

and the iCOPE (Section 3.1.2), the authors compared the N-CNN with the ResNet architecture

and with a classifier based on Local Binary Patterns (LBPs) and SVMs. Regarding the first

dataset, the N-CNN achieved 91% accuracy and 0.93 AUC, while the ResNet reached 87.1%

accuracy and 0.89 AUC, and the LBP obtained 85.5% accuracy and 0.82 AUC. To the iCOPE,

the N-CNN, ResNet and LBP achieved, respectively, 84.5%, 82.9% and 81.3% accuracy, without

statistical significance tests.

Salekin et al. (2021b) presented recently a temporal multimodal deep learning approach

to specifically assess neonatal postoperative pain. According to the authors, the assessment of
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postoperative pain requires a continuous and frequent observation of the neonate due to the

ever-changing intensity and expression of pain. Additionally, the authors argue that a multimodal

approach is necessary to an AI-based model, since several clinical validated assessment tools

are based on at least two dimensions. In this context, the authors proposed the analysis of the

facial expression combined with the body movement and crying sound. The final classification is

obtained by a majority voting of the labels of each indicator. The facial expression analysis is

based on a Bilinear CNN with two VGG-16 architecture (PARKHI; VEDALDI; ZISSERMAN,

2015), followed by two fully connected layers and a single dense layer, and a Long Short Term

Memory (LSTM) architecture of Recurrent Neural Network (RNN) in order to integrate the

temporal information. The Bilinear CNN is used to extract features from two different regions of

the input image, enabling fine-grained image classification (LIN; ROYCHOWDHURY; MAJI,

2015). Meanwhile, the LSTM architecture learns the temporal information of the deep features

extracted by both VGG-16 CNNs (HOCHREITER; SCHMIDHUBER, 1997). To body movement

feature extraction, Salekin et al. (2021b) trained the VGG-16 using a motion and body image

of the neonate. The motion image is calculated by subtracting consecutive frames of the video

and attributing a value of 1 (movement) or 0 (no movement). In this way, the motion image

segments regions of the input sample that presents movement. Similarly to the facial expression

analysis, the deep features of body movement obtained by the VGG-16 are processed on the

same, but parallel to the facial expression one, LSTM architecture. Regarding the crying sound

analysis, the authors converted the raw audio signal to a spectrogram image, obtaining a visual

representation of the input audio signal. Then, the VGG-16 extracted the deep features of the

image. According to the authors, the spectrogram image represents the change of frequency

components with respect to time and suppresses noise.

Observing the results obtained by Salekin et al. (2021b), the crying sound presented

higher relevance than the analysis of the face and body movement when assessing postoperative

pain. It achieved 79.63% accuracy and 0.87 AUC, outperforming the 69.52% accuracy and

0.82 AUC of the face and the 70.50% accuracy and 0.78 AUC of the body. The authors suggest

that the crying sound can better assess postoperative pain as compared to facial expression and

body movement (SALEKIN et al., 2021b). With respect to the multimodal approach, combining

the labels of each indicator, it achieved similar results to the crying sound analysis. The only

observed difference is the AUC, in which the multimodal approach achieved 0.90 performance,

without any statistical significance test to compare the performance of each approach (multimodal

against unimodal analysis). The authors state that, even though the crying sound presented similar
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performance to the multimodal approach, the latter is still necessary because pain manifests itself

in different signals and there might be situations that one indicator is unavailable (SALEKIN

et al., 2021b).

In 2021, we implemented a deep learning-based approach to be used on mobile devices

(CARLINI et al., 2021a). Using the UNIFESP and iCOPE datasets, we fine-tuned the VGG-Face

architecture (PARKHI; VEDALDI; ZISSERMAN, 2015) and trained from scratch two fully

connected layers with 512 neurons each. This architecture was found by a random search with

parameters ranging from 50 to 2048 neurons and 1 to 3 fully connected layers. Additionally,

we observed the influence of training the model with each and both datasets. The evaluation

process was carried out using the hold-out cross-validation technique (10 repetitions), randomly

choosing independent test sets (20% of original datasets) for each repetition. When trained with

the UNIFESP dataset only, the model presented 72% accuracy and 0.74 AUC. The iCOPE-trained

model outperformed it, achieving 83% accuracy and 0.82 AUC. However, as expected, the model

trained with both datasets obtained the best performance with 89% accuracy and 0.86 AUC. The

differences between evaluation metrics were statistically significant at the p = 0.05 level. The

best model of the hold-out repetitions was later optimised for mobile environment, and embedded

in an application developed for Android devices (CARLINI et al., 2021a). In this work, we

also described results when applying XAI techniques in neonatal pain assessment. Using the

Integrated Gradients algorithm, which will be described in Section 3.4.1, we showed that the

classification model highlighted regions of the face similar to the facial perception of adults

when assessing pain and similar to the regions proposed by clinical scales, named the nasolabial

furrow, forehead, mouth, and protrusion of the tongue.

2.3 CURRENT PARADIGM OF RESEARCH

We have described here several studies proposing clinical scales to assess pain through

the behavioural and physiological response of the neonate. Many of these studies also suggested

that these responses may be impacted by the current state of the neonate (e.g., awake, sleeping,

sedated, etc), the severity of illness, and the frequency of painful procedures/situations. Also,

these responses may occur during distressful, but not painful situations. More recently, research

suggests that the human facial perception when assessing neonatal pain is an innate cognitive

task that, holistically, is independent of training or clinical experience, even though some subtle

differences between health and non-health professionals might be identified. The fact that facial
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features proposed by the related literature and clinical scales do not have the same relevance as

those that compose the human facial perception is intriguing. Overall, we might say that these

works show that clinical scales might need to be reviewed or revisited, considering non-subjective

and pain-specific information.

One of the possible approaches to address these issues is the use of computational

frameworks specifically implemented end-to-end to pain assessment. Even though the studies

described here showed impressive performance to discriminate “pain” inputs from “no pain”

ones, there is still a lack of pain-related works proposing to understand the decision-making

process of the classification models, which can be achieved through the use of XAI methods.

These investigations can lead, ultimately, to a better non-subjective and pain-specific findings

of the several behavioural and physiological responses of the neonate, enhancing the human

knowledge towards neonatal pain assessment.
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3 MATERIALS AND METHODS

In this chapter, we present two face image datasets containing several photos of neonates

during periods of rest (labelled as “no pain”) and during painful procedures (“pain”). Then, we

follow with the eye-tracking framework implemented (CARLINI et al., 2020). Also, we detail the

classification models, and the XAI methods that we used to investigate them. Subsequently, we

describe the post-processing steps to extract the perceived facial areas by humans and machine.

To the end of this chapter, we describe the evaluation metrics used to compare the human facial

perception with the most relevant regions of the image to each model.

3.1 FACE IMAGE DATASETS

To implement the eye-tracking framework and the classification models, we used the

following datasets: (1) UNIFESP Face Image Dataset (HEIDERICH; GUINSBURG; LESLIE,

2013), and (2) infant Classification of Pain Expression (iCOPE) (BRAHNAM et al., 2006, 2007).

3.1.1 UNIFESP Face Image Dataset

Heiderich, Leslie, and Guinsburg (2015) developed the UNIFESP Face Image Dataset at

the Federal University of São Paulo, Brazil. It includes 30 healthy neonates (7 late preterms and

23 born at term) with 34 to 41 weeks of gestational age and 24 to 168 hours of life. For each

neonate, the authors recorded 10 minutes of videos before, during, and after painful procedures.

These procedures, such as venipuncture, capillary, or intramuscular injection, were performed

while collecting routine tests or administering vaccines. After capturing the videos of each

neonate, the authors extracted frames every three seconds.

The authors captured all photographs using three Foscam cameras with a resolution of

320x233 (Figure 2). From the images captured by the system, the authors chose 12 images for

each one of the 30 participating neonates. In total, 360 images were collected, of which: 138

captured before a painful procedure, 30 during the procedure, and 192 images captured within

10 minutes after a painful procedure. Subsequently, health professionals randomly evaluated

each image. These health professionals were neonatologists with clinical experience working in

neonatal intensive care units. The assessment led to 164 images classified as “pain” and 196

images classified as “no pain”. Figure 3 shows examples of this dataset.
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Figure 2 – Physical structure built to collect data for the UNIFESP Face Image Dataset.

Source: Adapted from Heiderich, Guinsburg, and Leslie (2013).

It is noteworthy that these images have not been cropped or pre-processed, maintaining

the original information from the recording. Besides the face of the neonate, objects related to

the hospitalisation and also other parts of the body, such as the neck and hands, are present in the

images. Therefore, the similarity with real situations found in NICUs is preserved.

3.1.2 infant Classification of Pain Expression

The iCOPE dataset was developed by Brahnam et al. (BRAHNAM et al., 2005, 2006,

2007) during a study at the St. John Hospital (now called Mercy Hospital) with the Neonatology

Department in Missouri, USA.

The authors captured a total of 200 images from 26 neonates, 13 girls and 13 boys, all

Caucasians. The age group of these neonates ranges from 18 hours to 3 days of life. Although all

of them were in good health, the authors reported that six male babies were circumcised the day
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Figure 3 – Examples of images of neonates taken after painful procedure from the UNIFESP
Face Image Dataset.

Source: UNIFESP Face Image Dataset.

Figure 4 – Example of image of a neonate with pain from the iCOPE.

Source: iCOPE.

before the photos were captured and that everyone’s last feed was done in a period of 45 minutes

to 5 hours before the photographs were taken. Figure 4 illustrates an example from the iCOPE.

All images were photographed using a Nikon D100 digital camera in ambient light

conditions with a resolution of 3008x2000 in a separate room from other neonates. Neonates
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Figure 5 – Examples of facial expressions of the iCOPE.

Source: Adapted from Brahnam et al. (2005).

were photographed during a session in which they experienced 4 different stimuli performed in

the following sequence:

1. Transport from one crib to another: after transport between cribs, the neonate was

swaddled and several photographs were taken over 1 minute. Besides, the authors

observed whether the neonate was crying or resting;

2. Air stimulus: after resting for 1 minute, the neonate’s nose was exposed to a breath

of air emitted from a squeezable plastic camera lens cleaner;

3. Friction: after 1 minute, the external lateral surface of the heel was rubbed for 10

to 15 seconds with cotton wool soaked with 70% alcohol;

4. Pain: after 1 minute of rest, the external lateral surface of the heel was punctured

for blood collection. Photographs were taken from the moment the needle was

introduced until the end of the collection.

This dataset is composed of: 63 images of neonates resting, 18 crying, 23 during air

stimulation, 36 during friction, and 60 during the painful procedure. Figure 5 shows a sample set

of these images. However, we used only the images of neonates during rest and painful procedure

to train the classification models (CARLINI et al., 2021a) .

3.2 EYE-TRACKING FRAMEWORK

To understand the human facial perception, we used previous research data of eye

movements recorded with the on-screen Tobii TX300 equipment that comprises an eye tracker

unit integrated to the lower part of a 23in TFT monitor with a screen resolution of 1280x1024

pixels (CARLINI et al., 2020; SOARES et al., 2021; SILVA et al., 2021; CARLINI et al.,
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Figure 6 – Eye-tracking methodology.

Source: Author.

2021b; BARROS et al., 2021; TAMANAKA et al., 2022). The eye tracker performs binocular

tracking at a data sampling rate of 300Hz with a minimum fixation duration of 60ms and a

maximum dispersion threshold of 0.5 degrees. We considered only data from participants that

the eye-tracker collected 70% or more of their gaze samples.

All data were collected at the Hospital of São Paulo, a university-affiliated hospital of the

Federal University of São Paulo. Ethics Committee for Research (1299/09, 3.116.151, 3.116.146,

and 3.201.307) approved this procedure, and it involved the participation of 143 volunteers

divided into four groups:

a) 44 experts (physicians): 4 paediatricians and 40 neonatologists;

b) 40 health professionals: 17 nursing assistants, 10 nurses, 5 physiotherapists, and 8

speech therapists;

c) 29 newborn parents;

d) 30 laypeople: non-physicians, non-health professionals and non-parents of newborn.

Figure 6 illustrates an overview of the eye-tracking framework used (CARLINI et al.,

2020). The framework is composed of the following 3 main steps: (1) an introductory screen with

instructions to the participant, (2) presentation of two evaluation trials, so that the subjects learn

and comprehend the experiment, and (3) the beginning of the procedure itself. Each neonatal

face image to be evaluated is non-centralised located on the screen and is shown randomly to the

volunteer for 7 seconds. All face images are separated in the experiment by a screen containing a

cross as the central fixation point. As suggested by Holmqvist et al. (2011), this cross is shown

for 2 seconds so that the ocular movement of all volunteers tends to start at the same position on

the next face image screen.
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Participants had to verbally answer a numerical score of the displayed image on the

subsequent question screen shown for 3 seconds, using a scale ranging from 0 (no pain) to 10

(extreme pain). Overall, there were 20 frontal face images of 10 different newborns to be assessed.

Each pair of images comprises one image of the newborn at rest and another image after a painful

procedure, all chosen from the UNIFESP Face Image Dataset. The total time to perform the

experimental procedure was approximately 5 minutes for each volunteer.

3.3 CLASSIFICATION MODELS

In this section, we describe the CNN architectures VGG-Face (PARKHI; VEDALDI;

ZISSERMAN, 2015; CARLINI et al., 2021a) and N-CNN (ZAMZMI et al., 2019), and detail

the training protocol that we followed to optimise both models. All computational methods were

implemented using the TensorFlow framework (MARTÍN ABADI et al., 2015).

To the training of the classification models, we applied the state-of-the-art RetinaFace

face detector (DENG et al., 2019) on both face image datasets. It is a single-stage pixel-wise face

localisation method that employs a multitask learning strategy to simultaneously predict face

score, face box, five facial landmarks, and the 3D position and correspondence of each facial

pixel. RetinaFace detected all faces from UNIFESP and iCOPE datasets and generated a new

cropped image focusing on the face of the neonate.

3.3.1 VGG-Face

Following the results of Zamzmi et al. (2018), we used the VGG-Face with 16 layers

(PARKHI; VEDALDI; ZISSERMAN, 2015). However, differently from the Zamzmi et al. (2018)

methodology, in which the deep features extracted from the last convolutional layers were used for

pain classification, Carlini et al. (2021a) implemented new fully connected layers with Rectified

Linear Unit (Rectified Linear Unit (ReLU)) activation for pain presence classification, while

transferring the original learning of the convolutional layers.

To define experimentally the best architecture of fully connected layers in terms of

accuracy, we carried out a random search using from 1 to 3 layers with 50 to 2048 neurons

each (CARLINI et al., 2021a). Using both datasets, the result suggested the architecture of 2

fully connected layers with 512 neurons each, leading to an architecture with 27,823,938 total

parameters. Appendix A shows the final classification model.
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This random search also determined the learning rate (ηprior fine-tuning = 1e − 4 &

ηduring fine-tuning = 1e − 6) and the weight regularisation (l1 = 5e − 4) values. The parame-

ters used for training are important to avoid the overfitting of the model, consequently, increasing

its generalisation capability. Also, we used DropOut (50%) layers between fully connected ones.

As the loss function, we used the Categorical Cross-Entropy, given by

Loss = −
C∑︂
i

yilog(f(x)i), (1)

where C is the number of distinct classes, yi is the true answer, and f(x)i is the answer given

by an activation function (e.g. Softmax). Also, L1 regulariser was applied to penalise layer

parameters during optimisation. This regulariser is described as

Penaltyl1
= l1

n∑︂
i=0

|xi|. (2)

RMSprop was chosen as the optimiser of the training, since it presents notable results in

transfer learning frameworks (HINTON; SRIVASTAVA; SWERSKY, 2012). It is noteworthy

that the term that multiplies the gradient ∇wt fluctuates. Therefore, the learning rate changes

dynamically based on the training sample. The optimiser is represented by

wt+1 = wt − η
√

rmst + ϵ
∇wt, (3)

where rmst = ρ ∗ rmst−1 + (1 − ρ) ∗ (∇wt)2. Martín Abadi et al. (2015) suggests ρ = 0.9 and

ϵ = 1e − 7.

Prior to training, we reshaped all images to the VGG-Face’s input size of 224x224. Also,

as required by Parkhi, Vedaldi, and Zisserman (2015), the colour channel was modified from

RGB to BGR. Each channel was centralised on zero using the mean value of the original dataset

used by Parkhi, Vedaldi, and Zisserman (2015). Figure 7 illustrates this step.

3.3.2 Neonatal Convolutional Neural Network (N-CNN)

Zamzmi et al. (2019) proposed the N-CNN. We adapted this original architecture,

described in Section 2.2, in order to apply XAI techniques on it. As it will be highlighted in the

Section 3.4, both algorithms extract feature relevance based on the classification of the model and

rely on the classification index of the output. Since the original N-CNN uses a sigmoid function

as the output, presenting a single classification index, we implemented, instead, a dense layer of

two units with softmax activation. This adaptation resulted in a architecture with 78,234 total
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Figure 7 – VGG-Face preprocessing.

Source: Author, using the iCOPE.

parameters. Appendix B shows the adapted architecture. We implemented all computational

methods using the TensorFlow framework (MARTÍN ABADI et al., 2015).

It should be noted that the convolutional layers of the central and right branch are followed

by Leaky ReLU activation (α = 0.01), and DropOut (10%). After the merging layer, ReLU was

applied after the convolutional and fully connected layers, and DropOut after the latter.

While the loss function and optimiser were the same as the VGG-Face’s ones, the N-CNN

uses L2 regulariser with l2 = 0.01, given by

Penaltyl2
= l2

n∑︂
i=0

xiˆ2. (4)

We trained the adapted architecture end-to-end with the UNIFESP Face Image dataset

and the iCOPE. Prior to training, we reshaped all images to 120x120 size, following the N-CNN’s

input size.

3.3.3 Training Protocol

To evaluate each model, we implement a training protocol named leave-some-subjects-out

cross-validation, based on the same reasoning as the leave-one-subject-out protocol. In other

words, we aggregate images based on the identity of each neonate and, then, we evaluate the

model in all images regarding the neonates of the test set. Each test fold contained 10% neonates

of each dataset. This way, we ensure that training and test sets are fully independent, avoiding

the leaking of information and better analysing the generalisation capabilities of each model

when assessing new and different neonates (COUTRIN et al., 2022). Also, we believe that this
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Figure 8 – Illustration of Data Augmentation.

Source: Author, using the iCOPE.

training protocol is more suitable when transferring learning the knowledge of pre-trained CNNs.

Specifically about the VGG-Face architecture, its feature extraction process is heavily based on

facial recognition and may bias the actual performance of the model in pain assessment.

In order to avoid over-fitting, we applied data augmentation on both face images datasets.

This procedure, widely used in the literature, aims to increase the number of available samples

performing subtle changes on it (PARKHI; VEDALDI; ZISSERMAN, 2015; PEREZ; WANG,

2017; MIKOŁAJCZYK; GROCHOWSKI, 2018). To each original image from both datasets,

we generated 20 new images (Figure 8) randomly using the following parameters: rotation

(30º), shear (0.15), width and height shift (0.20), brightness (0.50 - 1.1), zoom (0.70 - 1.5),

and horizontal flip. To verify if these images present the entire face of the neonate we double
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check it with the RetinaFace algorithm. Therefore, we only consider for training the ones that

RetinaFace was able to successfully detect the faces. Regarding the number of images per weight

adjustment, we used a mini-batch of 16 images during training, speeding up the process and

reducing over-fitting.

Regarding the VGG-Face, training started with weight adjustment of the fully connected

layers, saving the weights of the model that present the lowest error. Fine-tuning started when

results did not improve for 5 successive epochs, when convolutional layers of Group 4 & 5 were

trained as well. The training process stopped when the error value converged. To the N-CNN’s

training, we did not perform fine-tuning, and the training process stopped when the error did not

improve for 10 consecutive epochs.

3.4 EXPLAINABLE ARTIFICIAL INTELLIGENCE

Artificial Intelligence algorithms, such as Deep Neural Networks, have achieved re-

markable performance in a variety of tasks and contexts. However, due to their deep complex

structures, it is not clear and simple how to understand the decision-making process that results

in an answer. Consequently, these models are commonly known as “black boxes”, where an

input sample to be processed is inserted and an accurate and precise response is given at the end.

Furthermore, quantitative metrics (e.g., accuracy and F1 score) are only a set of performance

measures that are purely based on the actual and predicted answer to a given input. Therefore,

there is a need to qualitatively understand the features that are relevant to and extracted by the

decision-making process of such models. In this context, XAI techniques provide many benefits:

developers can use this to debug and improve their algorithms and datasets, and end-users can

understand the reasoning of a model’s prediction and, ultimately, develop trust in the model

(SUNDARARAJAN; TALY; YAN, 2017). Also, Selvaraju et al. (2017) state that when AI

models perform significantly better than humans, the explanations provided by it should enhance

human knowledge (machine teaching).

In Cheng et al. (2022), it is provided three approaches to generate explanations: directly

from a transparent machine learning algorithm (e.g., Decision Trees), or from an algorithm

that creates a post-hoc modelling, or visualisation tool. We benefit from the third approach,

using mechanisms external to the main classification model to help describe the decision-making

process of it. Techniques that apply this approach produce an attribution mask to a given input,

highlighting its relevant features, such as, in our work, the pixels of the input image.
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This section firstly presents in details two XAI techniques:

1. Integrated Gradients, proposed by Sundararajan, Taly, and Yan (2017);

2. Gradient-weighted Class Activation Mapping (GradCAM), proposed by Selvaraju

et al. (2017);

We applied both methods on all images from the UNIFESP Face Image Dataset that

were used to collect eye-tracking data (CARLINI et al., 2020). TensorFlow provides a full

implementation of Integrated Gradients1, and Keras implements GradCAM2.

Additionally, we describe in this subsection the Attribution Mask Processing, a required

step to represent the attribution mask similar to human heatmaps.

3.4.1 Integrated Gradients

Figure 9 – Example of applying Integrated Gradients.

(a) Input feature interpolation in terms of γ.

(b) Attribution mask. (c) Input + attribution mask.

Source: Author, using iCOPE.

1Available on: https://github.com/tensorflow/docs/blob/master/site/en/tutorials/
interpretability/integrated_gradients.ipynb.

2Available on: https://keras.io/examples/vision/grad_cam/.

 https://github.com/tensorflow/docs/blob/master/site/en/tutorials/interpretability/integrated_gradients.ipynb
 https://github.com/tensorflow/docs/blob/master/site/en/tutorials/interpretability/integrated_gradients.ipynb
https://keras.io/examples/vision/grad_cam/
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Integrated Gradients is a robust XAI technique introduced by Sundararajan, Taly, and Yan

(2017). The goal of the method is to accumulate the local gradients of a given pixel, assigning its

importance as a score for how much it adds to the overall probability of the model’s classification,

and, consequently, obtaining an attribution mask.

In contrast to previous related works on XAI, Sundararajan, Taly, and Yan (2017) state

that every attribution method must have some desirable characteristics (or axioms) in order to

tease apart errors that stem from the misbehaviour of the model versus the misbehaviour of the

attribution method. These properties are:

1. Sensitivity, this axiom has two parts:

a) If the baseline and the input differ only in one feature, but have different

predictions, then this feature gets non-zero attribution;

b) If a feature does not play any role in the network, it receives no attributions.

2. Implementation Invariance: Two networks are functionally equivalent if their

outputs are equal for all inputs, despite having very different implementations.

Consequently, the attributions are always identical for two functionally equivalent

networks.

The Integrated Gradients’ equation combines both properties, and the attribution to a

given input feature LIntegratedGradients(xi) is obtained by

LIntegratedGradients(xi) ::= (xi − x′
i) ×

∫︂ 1

γ=0

∂F (x′ + γ × (x − x′))
∂xi

dγ, (5)

where x is the input, x′ is the baseline, i is the feature of the input, F (x) is the function

(classification model), and γ is the interpolation value between x′ and x. Figure 9 illustrates the

method.

Also, Sundararajan, Taly, and Yan (2017) show that the Integrated Gradients presents

further characteristics that benefit the method:

3. Completeness: The attributions from integrated gradients sum to the difference

between the prediction scores of the input (F (x)) and the baseline (F (x′)). Therefore,

the prediction is entirely accounted for;

4. Linearity preservation: If a model F is a linear combination a × F1 + b × F2 of

two networks F1 and F2, then a linear combination of the attributions for F1 and

F2, with weights a and b respectively, is the attribution for the model F . In such a

way, the attribution method preserves any linear logic present within a model;
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5. Symmetry-Preserving: Given two features of an input x, if x1 = x2 and their

corresponding baseline is x′
1 = x′

2, their attributions are also equal. In other words,

if two features play the exact same role in the model, then they ought to receive the

same attribution.

Admittedly, the method has some limitations. As pointed by Sundararajan, Taly, and

Yan (2017), Integrated Gradients do not provide any insights about features interactions and

combinations. And more importantly, each analysis refers only to a single input and the behaviour

of the model when processing it, consequently, it does not directly offer global feature importance

across an entire dataset (SUNDARARAJAN; TALY; YAN, 2017).

3.4.2 Gradient-weighted Class Activation Mapping

In 2017, Selvaraju et al. (2017) introduced the GradCAM. Their work presents a

generalisation of the previous method called Class Activation Mapping (CAM) proposed by

Zhou et al. (2016). CAM can solely be applied to a CNN architecture that applies global

average pooling to the final convolutional feature maps, followed by a single fully connected layer

that produces the predictions (softmax). To overcome this limitation, GradCAM evaluates the

gradients between the final convolution layer and the desired output. In fact, GradCAM is able to

produce an attribution mask in terms of any convolutional layer of the architecture. However, as

stated by the authors, it is expected that the last convolutional layers has the best compromise

between high-level semantics and detailed spatial information, since the neurons in these layers

look for semantic class-specific information in the image.

To obtain the attribution mask Lc
GradCAM to a specific c class of a given input x, it is firstly

needed to compute the gradient ∂yc

∂Ak
ij

of the score yc (before the softmax) with respect to feature

maps A of the desired convolutional layer k. Then, the weights importance α of each feature

map are calculated by

αc
k =

global average pooling⏟ ⏞⏞ ⏟
1
Z

∑︂
i

∑︂
j

∂yc

∂Ak
ij⏞ ⏟⏟ ⏞

gradients via backpropagation

. (6)

This step generalises the CAM algorithm. The original method proposed the use of the

weights between the last convolutional layers and the neuron that outputs the score of a given

class as the importance weights αc
k of each feature map.
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The final attribution mask is obtained by

Lc
GradCAM = ReLU

(︄∑︂
k

αc
kAk

)︄
⏞ ⏟⏟ ⏞
linear combination

. (7)

ReLU is applied to filter out feature maps that present a negative influence on the class of study.

These features are likely to influence other classes instead of the desired one.

It should be noted that, since gradients are obtained with respect to the dimensions

of a specific feature map, the corresponding attribution mask Lc
GradCAM will present the same

dimensions. A simple up-scale of the attribution mask solves this problem by matching the mask

to the original input size.

3.4.3 Attribution Mask Post-Processing

In order to enhance the visualisation of each attribution mask, we propose post-processing

steps on it using classical computer vision techniques. The intuition of these procedures is

to enable a more direct comparison to the heatmap of the areas observed by adults during

eye-tracking experiments, filtering out the less relevant pixels of the input image.

The heatmaps generated by the Tobii Studio software have a colour map with green, yellow,

and red tones, meaning areas with a lesser number of fixations to more fixations (CARLINI

et al., 2020). Following this, we applied this same colour map to the heatmaps that illustrate the

attribution mask of both XAI methods. Figure 10a shows this first step of post-processing.

Secondly, we applied the k-Means algorithm in order to segment the attribution score into

5 clusters, enabling a better understanding of the importance of these scores. This way, clusters

1, 3 and 5 stand for green, yellow and red, and clusters 2 and 4 are the transitions between these

colours. MacQueen et al. (1967) introduced the k-Means algorithm, and it aims to cluster data by

trying to separate samples in n groups of equal variance, minimising a criterion known as the

inertia. This can be calculated by

Inert. =
n∑︂

i=0
min
µj∈C

(︂
∥xi − µj||2

)︂
, (8)

where xi is the input data, and µj is the corresponding mean of a given cluster τ . Finally, a new

attribution mask was created by labelling each original score with its corresponding cluster mean.

Figure 10b illustrates it.

In the third step, we applied a Gaussian Filter on those new attribution masks, smoothing

their values, and, consequently, the transitions between colours. This is a low-pass filter that
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Figure 10 – Steps 1 to 3: Integrated Gradients’ attribution mask post-processing.

(a) Step 1: Attribution mask
colour mapped to green,
yellow, and red.

(b) Step 2: Attribution mask
segmented into 5 clusters by
k-Means.

(c) Step 3: Clustered attributions
smoothed by a Gaussian
Filter of size 11x11.

Source: Author, using the iCOPE.

blurs an image using a Gaussian function, commonly used to describe a normal distribution. We

used a kernel of dimensions 11x11 with a standard deviation equal to 2. Figure 10c shows an

example of this step.

As the last step of post-processing, we computed an alpha channel to filter out less relevant

attribution scores. Alpha channels are applied when dealing with images composed of many

layers (e.g. an image of neonate + heatmap of the attribution mask). The main idea is to assign a

numeric value to each pixel of the up-front layer, ranging from 0 to 1. A value of 0 means that

the pixel is fully transparent, and the image beneath this up-front layer will be shown. A value of

1 means that the pixel is fully opaque. We assigned these values (0 or 1) based on the mean µ
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and standard deviation σ of the attribution mask A obtained in the previous step:

αchannel(A) =

⎧⎪⎨⎪⎩ 1 if Li ≥ µL + c × σL

0 if Li < µL + c × σL

, (9)

where c is a scalar, and Li is the attribution score of a pixel of x. In this work, the heatmap of the

mask is the up-front layer of the final composed image. Experimentally, we determined c = 0.5.

Figure 11 illustrates several alpha channels applied to an attribution mask.

3.5 PERCEIVED FACIAL AREAS

Recently, Schiller et al. (2020) proposed a comparison method between heatmaps of

eye-tracking data and attribution masks obtained by XAI techniques. Hwu et al. (2021) also used

this framework. In the first work, the authors compared the facial perception regarding human

emotions (e.g., “neutral”, “happy”, “sad”, etc) with the attribution mask of CNN models trained

for automatic emotion recognition. Subsequently, Hwu et al. (2021) compared the heatmap

explanations of a CNN model trained to predict driving behaviour with the gaze of human drivers.

Following Schiller et al. (2020), we created grey scale contour masks of all heatmaps

generated by the adults’ facial perception and by the attribution of XAI methods. These contour

masks show the most perceived regions of the image when assessing the neonatal pain.

Figure 12 – Example of a contour mask of the most relevant regions according to GradCAM.

Source: Author, using the UNIFESP Face Image Dataset.

Regarding the attribution masks obtained by the XAI methods, their contour masks were

created directly based on the processed attributions (Subsection 3.4.3). Figure 12 illustrates

this. It should be reminded that attribution masks generated by XAI methods have the same

dimensions as the input image (VGG-Face: 224x244; N-CNN: 120x120). However, in order to
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Figure 13 – Example of a contour mask of the perceived areas by physicians when assessing a
neonate with pain.

Source: Author, using the UNIFESP Face Image Dataset.

compare them with the adults’ facial perception, the XAI’s contour masks were resized to match

dimensions with the adults’ mask.

Regarding the adults’ contour masks, we applied an alpha channel in order to filter out

the less perceived areas by adults. The heatmap images generated by the Tobii Studio software

were converted to grey scale and, then, filtered out using analogously Equation 9 with c = 0.1.

Figure 13 shows an example of this procedure.

3.6 IMAGE COMPARISON METRICS

To compare the perceived facial areas and its corresponding contour masks, we used

quantitative metrics widely used in the field of computer vision. These metrics were also used by

Schiller et al. (2020) and Hwu et al. (2021).

The first metric is the cosine similarity, given by

cos(θ) = M1
flat · M2

flat

∥M1
flat∥∥M2

flat∥
, (10)

where Mflat is the flattened normalised vector of the contour mask M . Since we are dealing with

positive values, the cosine similarity ranges from 0 (non-similar vectors) to 1 (identical vectors).

We also used Spearman’s rank correlation coefficient, described as

rs = cov (rgM1 , rgM2)
σrgM1 σrgM2

, (11)

where the rgM is the ranks of the raw values within each vector, rs is the correlation coefficient,

cov (rgM1 , rgM2) is the covariance of the rank variables, and σrgM1 and σrgM2 are the standard
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deviations of the rank variables. Spearman’s correlation is a non-parametric measure of rank

correlation that ranges from -1 (negative dependency) to 1 (positive dependency). When rs = 0,

that means there is no dependency at all between M1 and M2.

The last metric used in this work is the Overlap. Proposed by Schiller et al. (2020), the

result of this metric is a value between 0 and 1. A value of 1 means that both heatmaps have

identical position and contour, while a value of 0 means that there is no overlap between the

viewed areas at all. Mathematically, let M1 = (a1,a2,...,an) and M2 = (b1,b2,...,bn) be two

flattened contour masks, this metric is given by

Overlap(A,B) =
∑︁n

0 Q(ai,bi)
n

, (12)

where Q(ai, bi) is a concordance indicator represented as

Q(ai, bi) =

⎧⎪⎨⎪⎩ 1 if ai = bi

0 if ai ̸= bi

. (13)
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4 EXPERIMENTS AND RESULTS

In this chapter, we describe the experimental results carried out in this dissertation. We

show the performance of the VGG-Face and the adapted N-CNN, and, then, we qualitatively

investigate GradCAM’s attribution masks calculated on distinct convolutional layers of the

VGG-Face and N-CNN. Next, we properly present our main contributions. Firstly, the qualitative

results, illustrating examples of heatmaps and contour masks of the perceived regions by adults and

by our classification models. Then, tables and violin plots with the quantitative results regarding

the image comparison metrics. Finally, we discuss our results following our main research

questions. Specifically, we focused on the analysis of the eye-tracking data of experts (physicians)

and parents when compared to the most relevant regions extracted by our classification model.

Therefore, we have the following six extraction models: VGG-Face’s (1) GradCAM and (2)

Integrated Gradients, N-CNN’s (3) GradCAM and (4) Integrated Gradients, (5) Parents, and (6)

Experts.

4.1 EXPERIMENTS

Prior to our main experiments, we carried out supporting ones in order to implement

and obtain the classification models that will be latter used in the feature extraction, and to

qualitatively investigate the feature extraction process performed by GradCAM in distinct layers

of the VGG-Face and N-CNN.

4.1.1 Classification Models Performance

Table 1 indicates that the VGG-Face architecture achieved the best on average performance

with 86.2% accuracy, 87.7% F1 score, and 85.4% AUC. Also, the results demonstrate that the

adapted VGG-Face model presents high generalisation capabilities, as shown by the 85.9%

precision and 90.3% sensibility. It should be noted that the standard deviation of all metrics

is considerably high (> 5%). The best result was obtained by the first training fold, where it

presented 96.6% accuracy, 96.9% F1 score, and 96.4% AUC. The first training fold was chosen

to be used in the latter feature extraction experiments.

As shown in Table 2, the adapted N-CNN architecture achieved an on average performance

of 77.1% accuracy, 80.8% F1 score, and 76.0% AUC. Analysing the average 89.0% sensibility,

we can observe that the model was able to correctly classify most of the positive labels of “pain”



55

Table 1 – Performance of the VGG-Face architecture.
Fold 1º 2º 3º 4º 5º 6º 7º 8º 9º 10º Average

Accuracy 96.6% 84.0% 72.7% 92.0% 92.5% 91.1% 84.3% 76.0% 83.3% 89.6% 86.2% ± 7%
Precision 93.9% 82.6% 79.3% 95.7% 94.1% 84.4% 88.0% 71.4% 82.8% 86.7% 85.9% ± 7%
Sensibility 100.0% 82.6% 71.9% 88.0% 94.1% 100.0% 81.5% 100.0% 88.9% 96.3% 90.3% ± 9%
F1 score 96.9% 82.6% 75.4% 91.7% 94.1% 91.5% 84.6% 83.3% 85.7% 91.2% 87.7% ± 6%

AUC 96.4% 83.9% 72.9% 92.0% 91.8% 91.4% 84.5% 70.0% 82.5% 88.6% 85.4% ± 8%

Table 2 – Performance of the adapted N-CNN architecture.
Fold 1º 2º 3º 4º 5º 6º 7º 8º 9º 10º Average

Accuracy 79.7% 72.0% 81.8% 76.0% 66.0% 71.4% 90.2% 82.0% 79.2% 72.9% 77.1% ± 7%
Precision 73.2% 63.6% 82.4% 67.6% 73.5% 69.0% 92.3% 78.4% 74.3% 71.9% 74.6% ± 8%
Sensibility 96.8% 91.3% 87.5% 100.0% 73.5% 74.1% 88.9% 96.7% 96.3% 85.2% 89.0% ± 9%
F1 score 83.3% 75.0% 84.9% 80.7% 73.5% 71.4% 90.6% 86.6% 83.9% 78.0% 80.8% ± 6%

AUC 78.7% 73.4% 80.7% 76.0% 63.1% 71.5% 90.3% 78.3% 76.7% 71.2% 76.0% ± 7%

and “no pain”, therefore, presenting a low number of false negatives. However, the 74.6%

precision indicates that the model presented an increased number of false positives of both

classes. Consequently, it reduced the generalisation capabilities of the model, as expressed by

the F1 score and AUC. Again, the standard deviation of all metrics is high (> 5%). The N-CNN

achieved its best performance with the seventh training fold, presenting 90.2% accuracy, 90.6%

F1 score, and 90.3% AUC. Therefore, this training fold was latter used in the feature extraction

experiments carried out in this work. Finally, it is noteworthy that, when assessing the 20 images

from the eye-tracking experiments, the N-CNN misclassified 2 images originally labelled as “no

pain” (UNIFESP dataset ID: 06-12348-145026 and 20-122223).

4.1.2 Layers’ Depth Impact on GradCAM feature extraction

To better understand GradCAM’s feature extraction described on the previous chapter,

we analysed it on different convolutional layers. In other words, following Equations 6 and 7, we

compute the weights α based on the gradients at different depths k of the CNN’s architecture,

retrieving the importance of each feature map A of the given layer.

Subfigures 14a (all images on Appendix C) and 14b (Appendix D) illustrate some

examples of the attribution mask calculated on the last convolutional layer of each group of

the VGG-Face architecture. The first convolutional group mainly identifies regions outside the

face and some edges of it, such as the contour of the eyes and mouth. It suggests that the first

convolutional group extracts information related to the contrast of the input image. The second

convolutional group appears to focus more on the face than the previous layer, also highlighting

contours related to contrast. The third group highlights similar regions to the second layer’s one.
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Figure 14 – Samples of input images and GradCAM’s feature extraction on the last
convolutional layer of each group of the VGG-Face.

(a) “Pain” images.

(b) “No pain” images.

From left to right: input image, 1st convolutional group, 2nd group, 3rd group, 4th group, and
5th group.

Source: Author, using the UNIFESP Face Image Dataset.

Surprisingly, the fourth group extracts granular information from several and distinct regions of

“no pain” images, not having any clear pattern of extraction or being similar to the previous layers.

To “pain” images, it seems that GradCAM highlighted regions extracted in the previous layers as



57

Figure 15 – Samples of input images and GradCAM’s feature extraction on the merging and
final convolutional layer of the N-CNN when assessing “no pain” (left) and “pain”
(right) images.

From left to right: “no pain” input image, merge layer, final convolutional layer, “pain” input
image, merge layer, and final convolutional layer.

Source: Author, using the UNIFESP Face Image Dataset.

well. Then, the fifth and final convolutional group extracts clustering information from the face.

Interestingly, the regions highlighted by this group were not highlighted by the previous ones.

In Figure 15 (Appendix E), we can observe GradCAM’s examples based on the merging

layer and on the final convolutional layer of the adapted N-CNN. Regarding “no pain” images,

the merging layer seems to mainly focus on the forehead. Analysing the final layer, it highlighted

distinct facial regions. Investigating “pain” images, both layers presented similar feature

extractions, highlighting the regions of the mouth. Yet, these layers also highlighted regions

outside the face, such as the clothing of the neonate, and the contour of the face.

For both classification models, we chose the last convolutional layer to be investigated in

our main results.

4.2 RESULTS

In this section, we present our main results. Firstly, we qualitatively compare the facial

perception of all extraction models. Then, we investigate the quantitative results of the image

comparison metrics.
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4.2.1 Qualitative Results

Subfigure 16a (all images on Appendix F) shows examples of the heatmaps of each

extraction model when analysing “pain” images. The results of “no pain” images are shown in

Subfigure 16b (Appendix H). The corresponding contour masks are shown in Appendices G and

I. The columns of these figures illustrate the facial perception of the VGG-Face’s (1) GradCAM

and (2) Integrated Gradients, N-CNN’s (3) GradCAM and (4) Integrated Gradients, (5) Parents,

and (6) Experts, respectively.

Analysing VGG-Face’s GradCAM applied on “pain” images, we can observe that it

presented a clustering feature extraction in specific facials regions. These regions are mostly the

forehead, eyes, nose, and mouth. Meanwhile, Integrated Gradients extracted granular information

from the forehead, contour of the eyes, and the nose. In some samples, it also extracted

information from the region of the mouth and nasolabial furrow, including some artefacts of

the image that are not task-specific, such as the blanket and hair of the neonate, for instance.

Comparing both XAI techniques, they did not present a similar feature extraction, even though

both methods were applied on the same classification model. Each XAI algorithm extracted

different information from the neonate’s face. Furthermore, the intensity of the heatmaps by

GradCAM is different of the Integrated Gradients’ ones. The latter presents a higher amplitude

of the attribution score, illustrated by the variation of green to red colour tones of the heatmap.

GradCAM’s heatmaps are majorly in red and warmer tones.

Next, analysing N-CNN’s GradCAM applied on “pain” images, the model extracted

clustering information from the mouth in almost all “pain” images, as shown by the red

tones. Integrated Gradients also extracted granular information from this region, but it also

highlighted other regions, such as the eye and forehead, with a lower attribution score. In some

images, the N-CNN also extracted non-task-specific information, such as the contour of the face.

Differently from what was observed in the VGG-Face’s results, both XAI methods extracted

similar information, mainly focusing on the mouth, even though Integrated Gradients highlighted

other regions as well.

Investigating humans when perceiving “pain” images, Parents and Experts extracted

holistic and similar information from the neonate’s face, with no clear differences between them.

However, Experts seem to present a more focused facial perception when compared to Parents.

This can be visualised by the sparse and light green tones of the heatmap and the larger regions of

the perceived facial areas. Comparing adults’ model with machine’s ones, the clustering feature
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Figure 16 – Samples of heatmaps of facial features extracted by VGG-Face’s (1) GradCAM and
(2) Integrated Gradients, N-CNN’s (3) GradCAM and (4) Integrated Gradients, (5)
Parents, and (6) Experts.

(a) “Pain” images.

(b) “No pain” images.

Source: Author, using the UNIFESP Face Image Dataset.

extraction of the VGG-Face’s GradCAM seems to present the most similar facial perception to

the holistic extraction of Parents and Experts.

Regarding “no pain” images, VGG-Face’s GradCAM also resulted in a clustering behaviour

of perceived facial areas. However, this time, it seems that GradCAM focused mostly on centred

facial regions, named the region between eyebrows, nose, and mouth. Analogously Integrated

Gradients also focused on these central regions, extracting granular information from them.
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Curiously, Integrated Gradients highlights the contour region of the eyes, but not the eyes itself.

Both XAI methods seem to agree more to “no pain” images than to “pain” ones, highlighting

similar regions. However, they presented dissimilar intensities of attribution scores. In other

words, the relevance of the highlighted regions is different to each XAI technique.

When analysing N-CNN’s GradCAM assessing “no pain” images, we did not observe

any clear pattern of facial feature extraction and intensity of attribution score. Also, in almost

all images, it highlighted non-task-specific regions. Meanwhile, Integrated Gradients mainly

highlighted the mouth, and eyes (and its eyelids). Curiously again, it also highlighted the nostril

of the neonate in some images. The higher attribution scores seem to be on the eyes and mouth

regions. Different from the observed information on “pain” images, the XAI methods applied on

the N-CNN analysing “no pain” images appear to disagree between them, highlighting different

regions, and scoring distinct attribution relevances as well.

As expected, Parents and Experts did not highlight distinct facial regions when comparing

them. Their holistic facial perceptions were focused on the regions of the eyes, nose, and mouth.

Again, Experts had a more concentrated facial perception than Parents. Finally, VGG-Face’s

GradCAM once more seems to present the most similar facial perception to the Parents and

Experts’ one, showing a clustering and holistic facial perception.

4.2.2 Quantitative Results

In this section, we show the results of the image comparison metrics between all extraction

model. Since we have 6 models, there are 15 distinct pairs of comparison to be analysed. To

each evaluation metric, we have:

10 neonates × 2 classes × 15 pairs of comparison = 300 sample results. (14)

Tables 3 and 4 show the average of each evaluation metric to “pain” and “no pain”

images, respectively. Table 5 exhibits the statistical difference when comparing the agreement

between each extraction model towards “pain” and “no pain” images. Prior to testing statistical

differences, we performed the Shapiro-Wilk normality test in all evaluation metric distributions

(SHAPHIRO; WILK, 1965). Razali, Wah, et al. (2011) suggest that the Shapiro-Wilk test is the

most suitable method for small sample size problems. According to the normality test results, we

applied the Student’s t-test (STUDENT, 1908) to normal distributions and the Mann–Whitney U

test (MANN; WHITNEY, 1947) to non-normal ones in order to verify statistical difference at

p < 0.05 level.
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Table 3 – Average result of each evaluation metric of all perceptions towards “pain” images.
Cosine Similarity Experts GradCAM|N-CNN GradCAM|VGG-Face I.G.|N-CNN I.G.|VGG-Face Parents

Experts 1.0000 0.3670 0.5812 0.3865 0.3930 0.7505
GradCAM|N-CNN 0.3670 1.0000 0.3242 0.3319 0.1893 0.3546

GradCAM|VGG-Face 0.5812 0.3242 1.0000 0.3224 0.3244 0.5618
I.G.|N-CNN 0.3865 0.3319 0.3224 1.0000 0.2511 0.3607

I.G.|VGG-Face 0.3930 0.1893 0.3244 0.2511 1.0000 0.4202
Parents 0.7505 0.3546 0.5618 0.3607 0.4202 1.0000

Spearman Experts GradCAM|N-CNN GradCAM|VGG-Face I.G.|N-CNN I.G.|VGG-Face Parents
Experts 1.0000 0.1953 0.4272 0.2584 0.1925 0.6161

GradCAM|N-CNN 0.1953 1.0000 0.2285 0.2494 0.0518 0.1545
GradCAM|VGG-Face 0.4272 0.2285 1.0000 0.2281 0.1643 0.3959

I.G.|N-CNN 0.2584 0.2494 0.2281 1.0000 0.0635 0.2073
I.G.|VGG-Face 0.1925 0.0518 0.1643 0.0635 1.0000 0.2048

Parents 0.6161 0.1545 0.3959 0.2073 0.2048 1.0000
Overlap Experts GradCAM|N-CNN GradCAM|VGG-Face I.G.|N-CNN I.G.|VGG-Face Parents
Experts 1.0000 0.6376 0.7336 0.6651 0.6115 0.8167

GradCAM|N-CNN 0.6376 1.0000 0.7581 0.8016 0.7229 0.5979
GradCAM|VGG-Face 0.7336 0.7581 1.0000 0.7484 0.7049 0.6974

I.G.|N-CNN 0.6651 0.8016 0.7484 1.0000 0.7099 0.6230
I.G.|VGG-Face 0.6115 0.7229 0.7049 0.7099 1.0000 0.5894

Parents 0.8167 0.5979 0.6974 0.6230 0.5894 1.0000
Obs: The best correlation of each model and metric are in bold.

Table 4 – Average result of each evaluation metric of all perceptions towards “no pain” images.
Cosine Similarity Experts GradCAM|N-CNN GradCAM|VGG-Face I.G.|N-CNN I.G.|VGG-Face Parents

Experts 1.0000 0.2230 0.5784 0.4055 0.4908 0.7600
GradCAM|N-CNN 0.2230 1.0000 0.1457 0.1892 0.1633 0.2055

GradCAM|VGG-Face 0.5784 0.1457 1.0000 0.4222 0.5022 0.5490
I.G.|N-CNN 0.4055 0.1892 0.4222 1.0000 0.2704 0.3905

I.G.|VGG-Face 0.4908 0.1633 0.5022 0.2704 1.0000 0.4831
Parents 0.7600 0.2055 0.5490 0.3905 0.4831 1.0000

Spearman Experts GradCAM|N-CNN GradCAM|VGG-Face I.G.|N-CNN I.G.|VGG-Face Parents
Experts 1.0000 -0.0664 0.4346 0.2110 0.3303 0.5888

GradCAM|N-CNN -0.0664 1.0000 -0.0873 -0.0249 -0.0595 -0.1327
GradCAM|VGG-Face 0.4346 -0.0873 1.0000 0.2606 0.3393 0.3824

I.G.|N-CNN 0.2110 -0.0249 0.2606 1.0000 0.0743 0.1695
I.G.|VGG-Face 0.3303 -0.0595 0.3393 0.0743 1.0000 0.3146

Parents 0.5888 -0.1327 0.3824 0.1695 0.3146 1.0000
Overlap Experts GradCAM|N-CNN GradCAM|VGG-Face I.G.|N-CNN I.G.|VGG-Face Parents
Experts 1.0000 0.5137 0.7033 0.6355 0.6317 0.7714

GradCAM|N-CNN 0.5137 1.0000 0.6364 0.6789 0.6556 0.4419
GradCAM|VGG-Face 0.7033 0.6364 1.0000 0.7529 0.7605 0.6452

I.G.|N-CNN 0.6355 0.6789 0.7529 1.0000 0.6990 0.5800
I.G.|VGG-Face 0.6317 0.6556 0.7605 0.6990 1.0000 0.5806

Parents 0.7714 0.4419 0.6452 0.5800 0.5806 1.0000
Obs: The best correlation of each model and metric are in bold.
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Table 5 – p-Value of the statistical difference between “pain” and “no pain” distributions of the
comparison of all perceptions.

Cosine Experts GradCAM|N-CNN GradCAM|VGG-Face I.G.|N-CNN I.G.|VGG-Face Parents
Experts - 0.0116 0.9335 0.5815 0.1353 0.7337

GradCAM|N-CNN 0.0116 - 0.0098 0.0036 0.8501 0.0046
GradCAM|VGG-Face 0.9335 0.0098 - 0.0098 0.0002 0.3847

I.G.|N-CNN 0.5815 0.0036 0.0098 - 0.6776 0.4489
I.G.|VGG-Face 0.1353 0.8501 0.0002 0.6776 - 0.2474

Parents 0.7337 0.0046 0.3847 0.4489 0.2474 -
Spearman Experts GradCAM|N-CNN GradCAM|VGG-Face I.G.|N-CNN I.G.|VGG-Face Parents

Experts - 0.0025 0.8719 0.2142 0.1217 0.5057
GradCAM|N-CNN 0.0025 - 0.0008 0.0000 0.0450 0.0022

GradCAM|VGG-Face 0.8719 0.0008 - 0.4528 0.0025 0.3847
I.G.|N-CNN 0.2142 0.0000 0.4528 - 0.7344 0.4423

I.G.|VGG-Face 0.1217 0.0450 0.0025 0.7344 - 0.1911
Parents 0.5057 0.0022 0.3847 0.4423 0.1911 -
Overlap Experts GradCAM|N-CNN GradCAM|VGG-Face I.G.|N-CNN I.G.|VGG-Face Parents
Experts - 0.0026 0.1458 0.1270 0.4722 0.0579

GradCAM|N-CNN 0.0026 -- 0.0016 0.0001 0.0046 0.0002
GradCAM|VGG-Face 0.1458 0.0016 - 0.8072 0.0176 0.0312

I.G.|N-CNN 0.1270 0.0001 0.8072 - 0.3901 0.1720
I.G.|VGG-Face 0.4722 0.0046 0.0176 0.3901 - 0.7491

Parents 0.0579 0.0002 0.0312 0.1720 0.7491 -
Obs: p < 0.05 results are in bold.

More specifically, Table 3 shows the results regarding “pain” images. Firstly analysing

Experts, the highest agreement was achieved with Parents, where they presented a strong cosine

(avgcosine ≥ 0.70), Spearman (avgSpearman ≥ 0.60), and overlap (avgoverlap ≥ 0.70) correlations

(0.7505, 0.6161, and 0.8167, respectively). The results regarding Parents were analogously, where

they achieved the highest agreement with Experts. Then, N-CNN’s GradCAM obtained their top

cosine and Spearman scores with Experts (0.3670) and N-CNN’s Integrated Gradients (0.2494),

respectively, yet these correlations were weak (avgcosine ≤ 0.50, and avgSpearman ≤ 0.40).

Meanwhile, N-CNN’s GradCAM achieved its strongest overlap correlation with N-CNN’s

Integrated Gradients (0.8016). Analysing VGG-Face’s GradCAM, the model acquired the

highest cosine and Spearman correlation with Experts (0.5812, and 0.4272), showing moderate

correlations (0.50 < avgcosine < 0.70, and 0.40 < avgSpearman < 0.60). The top overlap score

was achieved with N-CNN’s GradCAM (0.7581). Subsequently, N-CNN’s Integrated Gradients

acquired it highest, yet weak, cosine and Spearman scores with Experts (0.3865, and 0.2584,

respectively). The strongest overlap was obtained with N-CNN’s GradCAM (0.8016). Lastly,

VGG-Face’s Integrated Gradients scored the highest cosine and Spearman correlation with

Parents (0.4202, and 0.2048), even so, these correlations were weak. To the overlap, VGG-Face’s

Integrated Gradients acquired the best result with N-CNN’s GradCAM (0.7229).
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Table 4 shows the results regarding “no pain” images. Equally, Experts and Parents

agreed more between themselves than with the remaining models. They presented strong cosine,

moderate Spearman, and strong overlap correlations (0.7600, 0.5888, and 0.7714, respectively).

Examining N-CNN’s GradCAM, its top scores were the weak cosine with Experts (0.2230),

and the weak Spearman and moderate (0.50 < avgoverlap < 0.70) overlap correlations with

N-CNN’s Integrated Gradients (-0.0249, and 0.6789). Then, VGG-Face’s GradCAM achieved

its best cosine and Spearman score when compared to Experts (0.5784, and 0.4346), showing

moderate correlation. To the overlap metric, the model obtained the strongest correlation with

VGG-Face’s Integrated Gradients (0.7605). Posteriorly, N-CNN’s Integrated Gradients obtained

the highest agreement with VGG-Face’s GradCAM (0.4222, 0.2606, and 0.7529), demonstrating

weak cosine, weak Spearman, and strong overlap correlations. Similarly, VGG-Face’s Integrated

Gradients also acquired its best scores with VGG-Face’s GradCAM (0.5022, 0.3393, and 0.7605),

but with moderate cosine, weak Spearman, and strong overlap correlations.

Specifically investigating the differences of agreement between “pain” and “no pain”

images, Table 5 presents the p-value of this statistical test. Firstly investigating Experts, they

presented statistical difference with N-CNN’s GradCAM in all metrics (“pain”)1. Then, N-CNN’s

GradCAM had statistical difference with all models and metrics (“pain”), except for the cosine

with VGG-Face’s Integrated Gradients. Meanwhile, VGG-Face’s GradCAM showed statistical

difference in the cosine similarity with N-CNN’s GradCAM (“pain”), N-CNN’s Integrated

Gradients (“no pain”), and VGG-Face’s Integrated Gradients (“no pain”). To the Spearman

correlation, VGG-Face’s GradCAM presented difference with N-CNN’s GradCAM (“pain”), and

VGG-Face’s Integrated Gradients (“no pain”). About the overlap, it obtained statistical difference

with N-CNN’s GradCAM (“pain”), VGG-Face’s Integrated Gradients (“no pain”), and Parents

(“pain”). Regarding N-CNN’s Integrated Gradients, it presented statistical difference in the cosine

similarity with N-CNN’s GradCAM (“pain”), and VGG-Face’s GradCAM (“no pain”). When

analysing Spearman and overlap results, we found only difference with N-CNN’s GradCAM

(both metrics, “pain”). Posteriorly, VGG-Face’s Integrated Gradients demonstrated statistical

difference in cosine similarity only with VGG-Face’s GradCAM (“no pain”). To Spearman and

overlap correlations, there were differences with N-CNN’s GradCAM (both metrics, “pain”),

and VGG-Face’s GradCAM (both metrics, “no pain”). Finally, Parents had statistical difference

with N-CNN’s GradCAM in all metrics (“pain”). Specifically to the overlap, it also presented

differences with VGG-Face’s GradCAM (“pain”).
1For readability, the label in parentheses indicates to which class of image the pair agreed the most.
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Figures 17a and 17b depict violin plots detailing the distribution of the overlap metric

between all extraction models. The violin plot is similar to the popular box plot, exhibiting

the median (dashed line) and interquartile ranges (dotted lines), but it also adds a probability

density of the illustrated data, providing deeper insights to the analysis. For each comparison

illustrated in the plot, we have a breakdown between “pain” and “no pain” images, distinguishing

its probability density.

Observing Figure 17a, we can investigate the aforementioned distinctions of agreement

to each class of image. VGG-Face’s GradCAM and Integrated Gradients agreed more to “no

pain” images, with its values mainly just below 0.8 level. More evidently, N-CNN’s GradCAM

and Integrated Gradients showed a higher agreement to “pain” images with average above 0.8

level, whereas the distribution of “no pain” images is spread between 0.6 and 0.8 thresholds.

VGG-Face’s GradCAM and N-CNN’s GradCAM had a higher overlap to “pain” images, but

it is noteworthy that the distribution regarding “no pain” images clearly presented two density

of values: the first at 0.7 level, and the second above 0.6 level. Meanwhile, both distributions

of VGG-Face’s Integrated Gradients and N-CNN’s Integrated Gradients were consistently at

0.7 level, but the “no pain” distribution presented slightly more spread. Then, VGG-Face’s

GradCAM and N-CNN’s Integrated Gradients resulted in both distributions majorly between 0.7

and 0.8, with no visual distinctions between them. To the VGG-Face’s Integrated Gradients and

N-CNN’s GradCAM, we can clearly observe that the “pain” distribution presented higher value

than the “no pain” one. As expected, Parents and Experts showed an overall higher agreement

than the other pairs of comparison, with distributions are at 0.8 level. Also, humans had a density

of values indicating stronger overlap to a subset of “pain” images. Finally, it is also noteworthy

that almost all values of the distributions shown in this figure are above 0.6 level, demonstrating

moderate or strong correlations between each pair.

As shown in Figure 17b, VGG-Face’s GradCAM and Experts presented moderate or

strong correlation, consistently at or above 0.7 level. Also, the distribution of “pain” images

has slightly greater values. Then, VGG-Face’s GradCAM and Parents resulted in a “no pain”

distribution majorly between 0.6 and 0.7, whereas the “pain” distribution is at 0.7 level, indicating

strong correlation. Next, when analysing VGG-Face’s Integrated Gradients and Experts, their “no

pain” distribution clearly has higher values than the “pain” one, where the values of the latter are

at 0.6 level. Regarding VGG-Face’s Integrated Gradients and Parents, the “no pain” distribution

is majorly concentrated at 0.6 level with moderate correlation, whereas the “pain” one is evenly

spread between 0.5 and 0.7, indicating greater agreement to a subset of images. Subsequently,
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Figure 17 – Violin plots showing the distributions of the overlap metric to each pair of
comparison.

(a) Between each XAI method, and between Adults.

(b) Between XAI methods and Adults.

Source: Author
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N-CNN’s GradCAM and Experts clearly achieved a greater overlap correlation to “pain” images,

with values majorly between 0.6 and 0.7. Meanwhile, the “no pain” distribution at 0.5 level also

indicates slightly moderate correlation. To the N-CNN’s GradCAM distributions with Parents,

we observed the weak correlation to “no pain” images, where its values are below 0.5 level. Their

“pain” distribution is at 0.6 level, demonstrating moderate correlation. Posteriorly, analysing

N-CNN’s Integrated Gradients and Experts, we observed that both distributions are between 0.6

and 0.7, indicating moderate correlation. Finally, N-CNN’s Integrated Gradients and Parents

presented both distributions at 0.6 level, but the “pain” achieved slightly greater values.

4.3 DISCUSSION

Overall, our findings indicate that XAI techniques present a suitable method of under-

standing the decision-making process performed by AI models when assessing pain through the

neonatal facial expression. Also, these methods enabled the comparison of the facial perception of

humans and machine towards neonatal pain assessment. Our results show that both classification

models (VGG-Face and N-CNN) majorly extract information from the facial features of the

neonate, but each model and XAI method presented it own decision-making process. Regarding

the facial perception of Experts and Parents, the quantitative results obtained here confirm our

previous findings that the human facial perception towards neonatal pain is holistic, regardless of

clinical expertise and pain presence on the neonate (CARLINI et al., 2020).

Basically, we implemented and trained two CNN architectures using our proposed

leave-some-subjects-out training protocol. To the VGG-Face, we applied transfer learning of

the convolutional layers, and trained from scratch fully connected ones. The model achieved

state-of-the-art performance, and demonstrated strong generalisation capabilities. To the N-CNN,

we trained from scratch all layers. Most likely due to the lack of training samples, the model did

not achieve the same performance as originally published in Zamzmi et al. (2019). Even so, all

metrics are at or above 75% level. Additionally, it is noteworthy that both classification models

presented a considerably high standard deviation in their average performance. We hypothesise

that our training protocol led to this result, since each test fold has neonates that only appear in

that fold. Consequently, there may be neonates that present a more expressive facial response

to pain, or its set of image have a higher quality in terms of facial position, brightness, and

resolution. Nevertheless, we believe that these conditions are necessary to properly simulate real

and less controlled clinical situations.



67

Additionally, we investigated the GradCAM feature extraction in terms of the depth of the

convolutional layer. To the VGG-Face model, GradCAM extracted non-task-related information

from the image at the first three convolutional groups, such as the contour of the face or regions

outside of it. And, at the fourth group, GradCAM did not present any clear pattern of extraction.

However, the fifth (and last) group extracted clustering information from specific regions of

the face. Meanwhile, to the N-CNN model, the merging layer and the last convolutional layer

extracted similar information, but the latter seem to be more task-specific. In other words, both

CNN architectures presented semantic class-specific feature extraction at the last convolutional

layer. Therefore, we believe that these results agree with the assumptions presented at Selvaraju

et al. (2017), where the authors suggested that this final layer presents the best compromise

between high-level semantics and detailed spatial information.

Moreover, as our main contribution, we investigated the facial perception of humans and

machine, and their differences, when performing neonatal pain assessment. To the VGG-Face

model, the relevance of each facial feature highly depends on the applied XAI technique. In

general, we observed that the VGG-Face mainly focus on the forehead, eyes, nose, and mouth

when analysing “pain” images, whereas it focused on more centred regions, such as the region

between eyebrows, nose, and mouth, when assessing “no pain” ones. Regarding the N-CNN

model, both XAI methods suggest that the mouth is the most relevant facial region when assessing

“pain” images. On the other hand, to “no pain” images, N-CNN’s GradCAM did not present any

clear behaviour of feature extraction. But when analysing the results provided by the merging

layer, it seems to focus on the forehead. Specifically about N-CNN’s Integrated Gradients, it

also highlighted the eye and the nostrils of the neonate in both classes of image. Comparing

both classification models, N-CNN feature extraction appears to be more focused on specific

facial regions, whereas the VGG-Face extracted information from larger areas of the face. We

see two possible reasons for this difference: (i) since the VGG-Face was originally trained for

facial recognition using millions of images, the convolutional layers extract subject discriminant

information; (ii) the N-CNN qualitative performance may be also impacted by the limited number

of training samples. Additionally, the experiments carried out here did not explicitly correlate

the extracted facial regions to the confidence score outputted by the model to a given class, even

though both XAI methods generate their attribution mask based on the output. Consequently, a

specific investigation to each facial feature is still necessary to address this question.

Regarding the comparison between GradCAM and Integrated Gradients, there is no strong

agreement between them when analysing the weak values of cosine similarity and Spearman
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correlation, regardless of the classification model. On the other hand, the average overlap between

methods was considerable higher than the other metrics. Applied on the VGG-Face, the XAI

methods presented a stronger overlap to “no pain” images. The opposite was observed regarding

the N-CNN. Our hypothesis is that cosine similarity and Spearman correlation have an increased

penalisation to distinct perceived regions. More importantly, it should be noted that Integrated

Gradients and GradCAM have different equations to calculate the attribution mask to a given

input image. Integrated Gradients individually evaluates each pixel of the input image, verifying

how much it adds to the overall probability of the classification. GradCAM’s equation is based

on the features maps of the last convolutional layer to a given input, weighting and averaging

them to obtain the final attribution mask. Due to the processing of each convolutional layer,

a unique pixel of the feature maps carries information from the corresponding neighbouring

pixels of the input image as well. Also, the GradCAM’s attribution mask has the same size as the

feature map, requiring an up-scale step to match with the original input size, and attributing the

same score to a specific region of the image. The equations and characteristics of each method

seem consistent with the attributions masks those machine models yield. Integrated Gradients

extracts pixel-specific information of the input image, leading to a more granular contour mask of

the perceived areas. Meanwhile, GradCAM extracts holistic and clustering information, resulting

in a larger and smoother contour mask of the perceived areas. Altogether, these results raise

concerns about the effective use and interpretation of XAI methods, and, more importantly, what

regions of the image are truly relevant to the decision-making process of the AI model. Since

several deep learning models are recently being proposed and implemented, we believe that these

results stand as a cautionary warning for computer scientists and the scientific community in

general for the safe and reliable use in real clinical situations.

Analysing the agreement between humans and machine models, VGG-Face’s GradCAM

presented the highest comparison metrics averages within all pairs, achieving moderate and strong

correlation with humans. Qualitatively, its clustering feature extraction is the most similar to the

holistic human facial perception. Regarding the remaining pairs of model and XAI technique,

the results suggest that the facial regions most relevant to them differs from the most observed

ones by adults when assessing neonatal pain, since both classification models achieved accuracy

scores comparable to adults’ ones but presented weak correlation. However, it is noteworthy the

clear relevance of the mouth to the N-CNN model. As observed by Barros et al. (2021) and Silva

et al. (2021), specific facial regions, such as the mouth and nasolabial furrow, are associated with

a better chance of adults to correctly identify the presence of pain. Since the compared humans’
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heatmaps are the average facial perception of all Experts and Parents that volunteered to the

eye-tracking experiments (CARLINI et al., 2020), we believe that a region-by-region semantic

comparison with volunteers that correctly identified pain presence/absence is necessary to further

understand these differences and which regions lead to this result.

Lastly, we observed that the agreement between humans and machine is correlated to

the label of the analysed images. According to all comparison metrics, Experts and Parents

agreed more with N-CNN’s GradCAM when analysing “pain” images. Specifically analysing the

overlap, Parents and VGG-Face’s GradCAM also presented a higher agreement to “pain” images.

These results suggest that humans and machine extract distinct information when analysing

“no pain” images. In other words, the discriminant facial features that define these images are

different to these groups. Once again, a region-by-region comparison with adults is required.
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5 CONCLUSION

This work presented novel results on the human and machine facial perception when

assessing neonatal pain by disclosing a better understanding of the decision-making process

performed by AI models and comparing it with the facial perception of experts and parents of

neonates. In this context, our findings advance the current knowledge on how humans and machine

perceive and decode the neonatal facial response to pain. We believe that our contributions

enable further improvement of clinical scales and tools widely used in real situations, whether

based on human or automatic frameworks.

To discriminate the presence of pain, both machine models extracted information from

facial regions clinically relevant, such as forehead, eyes, nose, and mouth. Interestingly, the

N-CNN architecture attributed a clear relevance to the region of the mouth when predicting

“pain” images. However, we found that, using the same classification model, different XAI

methods yielded distinct attribution masks to a given input. This finding raises concerns about

the effective use and interpretation of XAI methods, and, more importantly, what regions of the

image are truly relevant to the decision-making process of the machine model itself.

Comparing the human and machine facial perception, we observed that the VGG-Face,

through the use of the GradCAM technique, presented a clustering feature extraction that is

similar to the holistic facial perception of adults. However, further comparisons showed that

the facial regions most relevant to the implemented machine models are different to the ones

observed by adults. Moreover, there is disagreement between them when analysing neonates

during periods of rest. Consequently, these differences suggest that humans and machines can

learn with each other in order to improve their current decision-making process of identifying

the discriminant information that defines neonatal pain.

As future work, we intend to investigate the agreement between humans and machine to

each region of the face, segmenting each one accordingly to clinical scales, obtaining the contour

masks of the nasolabial furrow, eyes, mouth, etc. Also, we propose to analyse the contribution of

each facial feature to the output of machine models in terms of the confidence score to a given

input, since current XAI methods do not account for semantic information yet.
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APPENDIX A – FINAL VGG-FACE ARCHITECTURE.



79

Type of layer Number of filters Feature Map Size Filter Size Strides Padding

Image input 224 x 224 x 3

Group 1

1º convolutional layer 64 224 x 224 x 64 3 x 3 1 x 1 1 x 1
ReLU 224 x 224 x 64

2º convolutional layer 64 224 x 224 x 64 3 x 3 1 x 1 1 x 1
ReLU 224 x 224 x 64

MaxPooling 1 112 x 112 x 64 2 x 2 2 x 2 0 x 0

Group 2

3º convolutional layer 128 112 x 112 x 128 3 x 3 1 x 1 1 x 1
ReLU 112 x 112 x 128

4º convolutional layer 128 112 x 112 x 128 3 x 3 1 x 1 1 x 1
ReLU 112 x 112 x 128

MaxPooling 1 56 x 56 x 128 2 x 2 2 x 2 0 x 0

Group 3

5º convolutional layer 256 56 x 56 x 256 3 x 3 1 x 1 1 x 1
ReLU 56 x 56 x 256

6º convolutional layer 256 56 x 56 x 256 3 x 3 1 x 1 1 x 1
ReLU 56 x 56 x 256

7º convolutional layer 256 56 x 56 x 256 3 x 3 1 x 1 1 x 1
ReLU 56 x 56 x 256

MaxPooling 1 28 x 28 x 256 2 x 2 2 x 2 0 x 0

Group 4

8º convolutional layer 512 28 x 28 x 512 3 x 3 1 x 1 1 x 1
ReLU 28 x 28 x 512

9º convolutional layer 512 28 x 28 x 512 3 x 3 1 x 1 1 x 1
ReLU 28 x 28 x 512

10º convolutional layer 512 28 x 28 x 512 3 x 3 1 x 1 1 x 1
ReLU 28 x 28 x 512

MaxPooling 1 14 x 14 x 512 2 x 2 2 x 2 0 x 0

Group 5

11º convolutional layer 512 14 x 14 x 512 3 x 3 1 x 1 1 x 1
ReLU 14 x 14 x 512

12º convolutional layer 512 14 x 14 x 512 3 x 3 1 x 1 1 x 1
ReLU 14 x 14 x 512

13º convolutional layer 512 14 x 14 x 512 3 x 3 1 x 1 1 x 1
ReLU 14 x 14 x 512

MaxPooling 1 7 x 7 x 512 2 x 2 2 x 2 0 x 0

1º fully connected layer 512 x 1
ReLU 512 x 1

DropOut 512 x 1

2º fully connected layer 512 x 1
ReLU 512 x 1

DropOut 512 x 1

Dense layer 2 x 1

Output 2 x 1

Obs: height x width x channel.



APPENDIX B – ADAPTED N-CNN ARCHITECTURE.
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Type of Layer Number of Filters Feature Map Size Filter Size Strides Padding
Image input 120 x 120 x 3

Left Branch MaxPooling 1 12 x 12 x 3 10 x 10 10 x 10 0 x 0

Central Branch

1º convolutional layer 64 120 x 120 x 64 5 x 5 1 x 1 0 x 0
Leaky ReLU 120 x 120 x 64
MaxPooling 1 40 x 40 x 64 3 x 3 3 x 3 0 x 0

2º convolutional layer 64 40 x 40 x 64 2 x 2 1 x 1 0 x 0
Leaky ReLU 40 x 40 x 64
MaxPooling 1 14 x 14 x 64 3 x 3 3 x 3 0 x 0

Resizing 12 x 12 x 64
DropOut 12 x 12 x 64

Right Branch

Convolutional layer 64 120 x 120 x 64 5 x 5 1 x 1 0 x 0
Leaky ReLU 120 x 120 x 64
MaxPooling 1 12 x 12 x 64 10 x 10 10 x 10 0 x 0

DropOut 12 x 12 x 64
Merging Branches 12 x 12 x 131
Convolutional layer 64 12 x 12 x 64 2 x 2 1 x 1 0 x 0

ReLU 12 x 12 x 64
MaxPooling 1 6 x 6 x 64 2 x 2 2 x 2 0 x 0

Fully connected layer 8 x 1
ReLU 8 x 1

DropOut 8 x 1
Dense Layer 2 x 1

Output 2 x 1

Obs: height x width x channel.



APPENDIX C – VGG-FACE’S LAYERS DEPTH IMPACT ON GRADCAM FEATURE

EXTRACTION ON “PAIN” IMAGES.
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From left to right: input image, 1st convolutional group, 2nd group, 3rd group, 4th group, and
5th group.

Source: Author, using the UNIFESP Face Image Dataset.



APPENDIX D – VGG-FACE’S LAYERS DEPTH IMPACT ON GRADCAM FEATURE

EXTRACTION ON “NO PAIN” IMAGES.



85

From left to right: input image, 1st convolutional group, 2nd group, 3rd group, 4th group, and
5th group.

Source: Author, using the UNIFESP Face Image Dataset.



APPENDIX E – N-CNN’S LAYERS DEPTH IMPACT ON GRADCAM FEATURE

EXTRACTION ON “NO PAIN” AND “PAIN” IMAGES.
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From left to right: “no pain” input image, merge layer, final convolutional layer, “pain” input
image, merge layer, and final convolutional layer.

Source: Author, using the UNIFESP Face Image Dataset.



APPENDIX F – THE HEATMAPS OF FACIAL FEATURES EXTRACTED BY EACH

EXTRACTION MODEL WHEN ASSESSING “PAIN” IMAGES.
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From left to right: VGG-Face’s (1) GradCAM and (2) Integrated Gradients, N-CNN’s (3)
GradCAM and (4) Integrated Gradients, (5) Parents, and (6) Experts.

Source: Author, using the UNIFESP Face Image Dataset.



APPENDIX G – THE PERCEIVED FACIAL AREAS BY EACH EXTRACTION MODEL

WHEN ASSESSING “PAIN” IMAGES.
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From left to right: VGG-Face’s (1) GradCAM and (2) Integrated Gradients, N-CNN’s (3)
GradCAM and (4) Integrated Gradients, (5) Parents, and (6) Experts.

Source: Author, using the UNIFESP Face Image Dataset.



APPENDIX H – THE HEATMAPS OF FACIAL FEATURES EXTRACTED BY EACH

EXTRACTION MODEL WHEN ASSESSING “NO PAIN” IMAGES.
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From left to right: VGG-Face’s (1) GradCAM and (2) Integrated Gradients, N-CNN’s (3)
GradCAM and (4) Integrated Gradients, (5) Parents, and (6) Experts.

Source: Author, using the UNIFESP Face Image Dataset.



APPENDIX I – THE PERCEIVED FACIAL AREAS BY EACH EXTRACTION MODEL

WHEN ASSESSING “NO PAIN” IMAGES.
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From left to right: VGG-Face’s (1) GradCAM and (2) Integrated Gradients, N-CNN’s (3)
GradCAM and (4) Integrated Gradients, (5) Parents, and (6) Experts.

Source: Author, using the UNIFESP Face Image Dataset.
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