Nanoeletrônicos e Circuitos Integrados
URI Permanente desta comunidade
Navegar
Navegando Nanoeletrônicos e Circuitos Integrados por Autor "Buzuti, L. F."
Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
Dissertação Avaliação de dor em expressão facial neonatal por meio de redes neurais profundas(2020) Buzuti, L. F.A avaliação da dor neonatal pode sofrer variações entre profissionais de saúde, resultando em intervenção tardia e tratamento inconsistente da dor. Portanto, faz-se fundamental desenvolver ferramentas computacionais de avaliação da dor menos subjetivas e que não sofram influências de variáveis externas. Modelos de Aprendizado Profundo, especialmente baseados em Redes Neurais Convolucionais, ganharam popularidade nas últimas décadas devido à ampla gama de aplicações bem-sucedidas em análise de imagens, reconhecimento de objetos e reconhecimento de emoções humanas. Neste contexto, o objetivo geral desta dissertação foi analisar, quantitativa e qualitativamente, modelos de Redes Neurais Convolucionais na tarefa de classificação automática da dor neonatal por meio de um arcabouço computacional baseado em imagens de faces de dois bancos de dados distintos (um internacional, denominado COPE, e outro nacional, denominado UNIFESP). Como objetivos específicos foram implementados, avaliados e comparados três modelos existentes de redes neurais usados na literatura afim: Neonatal Convolutional Neural Network (N-CNN) e dois tipos da arquitetura ResNet50. Os resultados quantitativos mostraram a superioridade da arquitetura N-CNN para avaliação automática da dor neonatal, com acurácias médias de 87.2% e 78.7% para os bancos de imagens COPE e UNIFESP, respectivamente. No entanto, a análise qualitativa evidenciou que todos os modelos neurais avaliados, incluindo a arquitetura N-CNN, podem aprender artefatos da imagem e não variações discriminantes das faces, mostrando a necessidade de mais estudos para aplicação de tais modelos na prática clínica em questão