Inteligência Artificial Aplicada à Automação e Robótica
URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/716
Navegar
117 resultados
Resultados da Pesquisa
Agora exibindo 1 - 10 de 117
Dissertação Environmental sound recognition in embedded systems: bridging experiments in passenger vehicles to autonomous vehicle applications in smart cities(2024) Florentino, André LuizThe autonomous vehicle market is experiencing significant growth, with indications of transitioning from the "trough of disillusionment" to the "slope of enlightenment" on the Gartner hype cycle chart. Fundamental technologies encompassing extensive data analytics, computational capabilities, and sensor fusion techniques have already been established, and all stakeholders in this industry are persistently exploring novel approaches to enhance the overall perception of end users in terms of safety and trustworthiness. In this context, this project aims to develop and implement an Environmental Sound Recognition (ESR) algorithm in an embedded system for deployment in autonomous vehicles for Smart Cities in 2025, targeting advanced functionalities for early warning systems. Due to hardware constraints, a regular passenger vehicle was used, embedding the ESR algorithm in a Raspberry Pi with a microphone array. The limited literature on ESR algorithms for vehicles primarily focuses on siren detection without real-time inferences, and to address this, a dataset benchmarking study confirmed classifiers’ accuracy, leading to the creation of a new dataset tailored to autonomous vehicles. This new dataset provided a comprehensive baseline where several classifiers were trained and evaluated for accuracy, memory usage, and prediction time, with CNN 2D using aggregated features emerging as the top-performing model, achieving an average accuracy of 80% in the sliding window process. During the indoor experiment, the total prediction time attained an average of 47.6 ms, validating the algorithm’s performance with weighted F1-scores close to or better than cross-validation results. In the final phase of the methodology, real-world tests conducted in a passenger vehicle yielded similar results. However, inconsistencies were observed in certain classes due to insufficient sample diversity and environmental noise, which affected their accuracy. The results of this project indicate that its general objective was successfully achieved, contributing to understanding of ESR algorithms in embedded systems within passenger vehicles, and it is ready for integration into the electric and electronic architecture of autonomous vehicles for Smart Cities. Additionally, upon conducting further experiments across various vehicle categories to assess cabin insulation effects, this project could potentially enhance safety features for drivers with hearing impairments by adapting the ESR algorithm as an add-on feature in regular passenger vehicles- Análise de técnicas de navegação de robôs autônomos em ambientes dinâmicos e incertos(2023) Costa, Leonardo da SilvaEste trabalho propõe o estudo de sistemas de navegação para robôs móveis em ambientes dinâmicos e incertos. Para isso, foi feita uma comparação entre dois algoritmos de planejamento global de trajetória e um algoritmo de desvio de obstáculos, sendo eles: Multi Robot A Star (MRA*), Dynamic Visibility Graph A Star (DVG+A*) e Probabilistic Safety Barrier Certificates (PrSBC), respectivamente. Para que os algoritmos fossem escolhidos, foi realizada uma profunda pesquisa bibliográfica, comparando as técnicas utilizadas nos trabalhos mais recentes. A escolha dos algoritmos de planejamento considerou dois fatores: baixo tempo computacional e capacidade de coordenar os trajetos de diversos robôs simultaneamente. Já o algoritmo de desvio de obstáculo foi escolhido com base em três fatores: baixo tempo computacional, garantia teórica de que não haverá colisões e possibilidade de aplicar para diversos robôs simultaneamente. Os algoritmos escolhidos foram testados em diversos cenários, no domínio do futebol de robôs com times de 6, 11 e 16 robôs, para isso, foi utilizado o simulador grSim. No primeiro cenário de teste foi executada uma troca de posição antipodal, o qual é um teste bastante utilizado na literatura para testar algoritmos de desvio de obstáculos. Nesse teste foi possível verificar a vantagem em utilizar o MRA*, que coordena os trajetos para múltiplos robôs. O segundo cenário de teste consiste em uma movimentação dos robôs sob marcação do time oponente. Nesse teste o objetivo foi investigar a influência de robôs sem um algoritmo de desvio de obstáculo agindo em conjunto com os robôs controlados pelo PrSBC e os planejadores globais. Para a avaliação foram utilizadas 7 métricas: tempos de planejamento, de atualização do mapa, de navegação e de desvio de obstáculos, velocidade média geral, distância mínima entre os robôs e número de colisões. Em cada cenário foram testadas três combinações entre os algoritmos: DVG+A*, DVG+A* com PrSBC e MRA* com PrSBC. Com essas combinações foi verificada a eficácia em possuir um algoritmo de desvio de obstáculos, e as vantagens em possuir trajetos coordenados para múltiplos robôs em comparação aos trajetos gerados individualmente. A partir dos experimentos realizados foi possível identificar pontos positivos e negativos de cada algoritmo. No teste antipodal o MRA* dominou praticamente todas as métricas, ficando atrás somente no tempo de planejamento. O PrSBC evitou todas as colisões, independente da quantidade de robôs. No segundo cenário os resultados foram mais distribuídos, o DVG+A* foi o algoritmo de menor tempo de navegação e maior velocidade média, porém, também foi o que causou mais colisões. Ao acrescentar o PrSBC foi possível minimizar o número de colisões em detrimento da velocidade dos robôs e tempo de navegação. O MRA* com PrSBC foi a combinação com resultados mais equilibrados, com um número baixo de colisões, velocidade média razoável e tempo de navegação mais baixo que o DVG+A* com PrSBC. Enfim, através deste trabalho foi possível investigar as características de algoritmos de planejamento tanto individual, quanto coordenado, aplicados ao futebol de robôs. Também foi analisada a importância da inclusão de um algoritmo dedicado para o desvio de obstáculos. Partindo dos resultados obtidos foi possível concluir que, para múltiplos robôs o algoritmo de planejamento coordenado entrega o melhor desempenho considerando as métricas estabelecidas, o algoritmo de desvio de obstáculos é capaz de evitar todas as colisões, contanto que todos os robôs utilizem o algoritmo, e ao incluir robôs não controlados é possível evitar a maioria das colisões, obtendo a menos de uma colisão por teste.
- A inclusão escolar da criança com deficiência neuromotora no projeto de robótica educacional no ensino fundamental(2023) Canet, Ana Maria DinizA Robótica Educacional favorece o desenvolvimento do raciocínio, o trabalho em equipe e a socialização de conhecimentos. Neste trabalho, utilizando esta tecnologia educacional como mediadora da aprendizagem, questionou-se seu potencial inclusivo para alunos com deficiência, dessa forma, esta pesquisa é qualitativa e quantitativa, envolve três fases: pesquisa bibliográfica, questionário respondido pelos Professores de Apoio aos Projetos Pedagógicos de Tecnologias Educacionais (PAPP TEC) das Escolas Municipais de São Bernardo do Campo e estudo de caso envolvendo dois alunos do Ensino Fundamental – Anos Iniciais (1° ao 5° ano) com diagnóstico de encefalopatia crônica não evolutiva (ECNE), com quadro motor de tetraparesia. Os objetivos deste trabalho são: elencar quais são as estratégias e os recursos de tecnologia assistiva necessários para que crianças com diagnóstico de encefalopatia crônica não evolutiva, com quadro motor de tetraparesia, que estejam cursando o Ensino Fundamental – Anos Iniciais (1° ao 5° ano), consigam realizar as atividades propostas nas aulas de Robótica Educacional, verificar o potencial inclusivo da robótica educacional e quais são as dificuldades que os professores de robótica apresentam na inclusão de alunos com deficiência. As hipóteses levantadas são: a de que com as adaptações necessárias o aluno consiga melhorar seu desempenho funcional e realizar as atividades escolares com maior autonomia e independência e que a robótica apresenta potencial inclusivo. O estudo de caso utilizou para a avaliação do desempenho funcional a filmagem da criança antes e depois do uso das adaptações, a CIF (Classificação Internacional de Funcionalidade), o PEDI (Pediatric Evaluation of Disability Inventory) e a entrevista semiestruturada da PAPP TEC. Conclui-se que, a robótica virtual através de um software com varredura de tela e pranchas interligadas demonstrou ser uma possibilidade para adaptação de crianças que não tem acesso convencional as peças de montagem e programação do robô, principalmente as com deficiência neuromotora severa que obtém o acesso por acionador. Houve melhora de seu desempenho ocupacional e possibilitou sua participação nas atividades como protagonista e não apenas como observadora. No questionário e na entrevista semiestruturada foi apontado pelos professores a necessidade de ações formativas, ações colaborativas com os profissionais de apoio (Equipe de Orientação Técnica e professores especialistas nas áreas das deficiências) e de acesso à tecnologia assistiva para o desenvolvimento do potencial inclusivo da robótica
- Aprendizado por reforço profundo com redes recorrentes aplicado a negociação do minicontrato futuro de dólar(2023) Kinoshita, J. K.Recentemente há um aumento exponencial no uso de técnicas de aprendizado de máquina no mercado financeiro, principalmente para negociação de ações, na tentativa de prever o seu preço futuro. O objetivo desse projeto é desenvolver um sistema de negociação inteligente para o Minicontrato Futuro de Dólar, baseado no uso de aprendizado por reforço, usando o Deep Recurrent Q learning, um modelo de Redes Neurais Convolucionais combinadas com as Redes Neurais Recorrentes. O treinamento foi baseado em uma base da dados históricos do ativo e o agente realizou três ações: comprar, vender, manter o ativo, sempre visando o máximo retorno financeiro. Os experimentos realizados demonstraram que o sistema proposto teve um desempenho melhor do que as estratégias de Buy and Hold, um modelo baseado na Deep Q Network, um Fundo Cambial e uma estratégia baseada no indicador técnico MACD. Palavras-chave: Aprendizado por Reforço Profundo. Redes Neurais Convolucionais. Redes Neurais Recorrentes. Long Short-Term Network. Deep Recurrent Q Network. Mercado Futuro
- Machine learning methods for vessel type classification with underwater acoustic data(2022) Domingos, Lucas Cesar FerreiraA identificaçãodeembarcaçõesemambientesdetráfegocontroladopodeserbenéfica para manutençãodabiodiversidadeeproteçãodosambientescosteirosderegiõesprotegidas, gerandocontribuiçõesparaacomunidadelocaleparaoecossistema.Nesseâmbito,vê-se latente anecessidadedemelhorestécnicasdeidentificaçãoeclassificaçãodeembarcações, proporcionando mecanismosparamelhoradestessistemas.Sinaissonorossubaquáticossão mais difíceisdeseremmascaradosouomitidosduranteanavegaçãodeumaembarcaçãoquando comparados comoutrasfontesdedados,proporcionandoumafonteconfiáveleresistentea fraudes parasistemasdeclassificação,porém,estessofreminterferênciasdascondiçõesdomeio em queseencontram.Nestetrabalho,umametodologiafoipropostapararealizaraclassificação de sinaissonorossubaquáticosprovenientesdeembarcaçõesutilizandotécnicasdeaprendizado de máquina,considerandotambémasvariáveisambientais,comoadistânciaentreoshidrofonese as embarcações.Umacomparaçãorelativaàperformancedasredesneuraisconvolucionaismais comuns foirealizadautilizandoaarquiteturadaVGGedaResNet18.Tambémforamrealizadas comparações entreostrêsfiltrosdepré-processamentoscomumentepresentesnaliteratura,os espectrogramasMel,osfiltrosGamma,eatransformadadeconstanteQ,proporcionandoum estudosobreoimpactodetaisvariáveisnaclassificaçãofinal.Devidoaescassezdeconjuntos de dadosanotadosparaestudodesteproblema,umconjuntodedadosanotadosfoiproposto utilizando comobaseossinaissonorosdainiciativaOceanCanadaNetwork.Osresultados obtidos atingiramaacuráciade94.95%noconjuntodedadospropostousandoCQTcomofiltro de pré-processamentoparaumaredeneuralconvolucionalbaseadanaResNet.Oscódigosfontes para reproduçãodostestes,assimcomoparaobtençãododataset,estãodisponibilizadosde maneira gratuita e pública para fins acadêmicos
- O impacto da inclusão de índices sociais e macroeconômicos na detecção automática de fake news(2022) Carvalho, B. C. P. dos S.As fake news são notícias falsas que possuem a intenção de se apresentar como verdadeiras, causando assim diversos impactos na sociedade, sejam econômicos e financeiros, políticos, ou até em saúde pública. A detecção automática de fake news teve um avanço importante nos últimos anos, porém existe a carência de trabalhos em língua portuguesa, principalmente devido à baixa oferta de bases nesta língua. Pode-se evidenciar, também, que os trabalhos existentes são focados na detecção automática utilizando-se as características linguísticas ou nos padrões de dispersão das mesmas em mídias sociais. Com isso, este trabalho traz uma abordagem complementar à tarefa de detecção automática desses tipos de textos, incluindo o estudo do possível impacto da inclusão de índices sociais e macroeconômicos, como taxa de inflação e desemprego, no desempenho dos modelos. O trabalho foca na utilização dos classificadores SVM, Random Forest e Naive Bayes, além do conhecido modelo Bag of Words para extração das características linguísticas
Dissertação Uso de redes neurais profundas para previsão de curto prazo do preço da criptomoeda ethereum(2022) Lopes, Eduardo José CostaA criptomoeda se tornou um ativo popular nos mercados financeiros globais, o que significa que não apenas investidores individuais, mas também empresas de gestão de ativos em todo o mundo estão considerando essa nova classe de investimento. A principal contribuição desta pesquisa é abordar um problema univariado de previsão intra-diário com granularidade horária que compara arquiteturas de Redes neurais Artificiais Profundas e com mecanismos de atenção para a moeda intrínseca do Ethereum (ETH). Os resultados obtidos nos ajustes dos modelos e na predição levando-se em consideração séries históricas de dados recentes mostraram que a rede convolucional temporal TCN está contida no grupo de modelos mais acurados e com melhor retorno financeiro, superando outras arquiteturas consideradas em termos de tempo de processamento e o modelo ARIMA considerado como linha de base- Análise do impacto da quantidade de pontos de Wi-Fi na localização de robôs sequestrados em ambientes internos utilizando técnicas de redes neurais artificiais recorrentes(2022) Pegorelli Neto, A.A localização de robôs em ambientes fechados, onde o Global Positioning System (GPS) não pode atuar, é um constante desafio dos sistemas que envolvem robôs autônomos. Soluções baseadas em análise de radiofrequência apresentam alta complexidade devido à natureza dos sinais, passíveis de diversas interferências em ambientes quanto maior a quantidade de equipamentos eletrônicos, além da movimentação de pessoas e objetos, aumentando a dificuldade de processamento das informações tratadas. As limitações de processamento e uso de energia em dispositivos móveis também limitam a implementação de hardware embarcado capaz de realizar cálculos complexos exigidos em diversas soluções para o processamento e análise das informações em tempo hábil para apresentar eficácia na atuação. Com a portabilidade desses sistemas robotizados encontramos um novo desafio, o sequestro de robôs, quando o usuário movimenta o robô manualmente, sem nenhuma notificação no sistema e dificultando o processo de localização. Neste trabalho é proposto um estudo das mais recentes técnicas de localização em ambientes fechados, utilizando redes neurais recorrentes, como a Gated Recurrent Unit (GRU) e a Long-Short Term Memory (LSTM) para o tratamento de dados de potência de sinal Wi-Fi, ou Received Signal Strength (RSS), assim como a aplicação da técnica k-Nearest Neighbors (KNN) para casos onde ocorre o sequestro de robôs. O estudo foi feito a partir de um simulador construído dentro do ambiente virtual Webots® a partir do fingerprinting de um ambiente real com 6 pontos de acessoWi-Fi. Funções de distribuição acumulada foram utilizadas para avaliar cada um dos 3 sistemas para diversas combinações de pontos de acesso, níveis de ruído e níveis de atenuação simulados. Os resultados mostram que os sistemas de redes neurais recorrentes podem alcançar acurácia entre 0.44m±0.39m para LSTM, e 0.50m±0.38m para GRU, enquanto para a proposta baseada em KNN, temos 0.68m±0.73m, demonstrando a capacidade dos sistemas avaliados de se recuperarem após um evento de sequestro de robôs, mantendo resultados semelhantes aos observados sem a ocorrência de tais eventos
- Estudo da implementação de um escalonador baseado no algoritmo earliest-deadline-first por hardware para o IHM-PLASMA usando conceitos de processamento paralelo(2022) Krause, IgorEste projeto de pesquisa tem por objetivo implementar um novo bloco escalonador de tarefas de um sistema operacional baseado em tarefas, que foi implementado por hardware, para executar o processamento paralelo de instruções, intitulado Interlocked-Hardware- Microkernel (IHM), que é capaz de realizar a troca de tarefas em apenas dois ciclos de relógio (clock), a fim de aumentar a eficiência do processamento das instruções do microprocessador Plasma, que apresenta arquitetura do tipo Reduced Instruction Set Computer (RISC), utilizando-se o mínimo de recursos de hardware possível. Inicialmente este trabalho focou no estudo do microprocessador Plasma e posteriormente no estudo desse mesmo componente com a implementação do IHM em sua arquitetura. Foram estudados e documentados, de forma detalhada, o funcionamento e a arquitetura de todos os blocos básicos que compõem o sistema IHM. É esperado que outros projetistas de hardware possam se beneficiar com este projeto de pesquisa para implementar essa mesma estratégia de processamento paralelo de instruções em outros microprocessadores com a arquitetura RISC que executam sistemas operacionais baseados em tarefas. O novo bloco escalonador que foi incorporado ao IHM foi implementado com o algoritmo chamado Earliest-Deadline-First (EDF), que tende a tornar o sistema operacional baseado em tarefas (Hard real-time Systems) ainda mais eficiente que aqueles que são implementados com outros algoritmos, segundo a literatura atual. Essa nova solução de hardware realizada por este trabalho de pesquisa para o IHM foi simulada e analisada utilizando-se o Simulador Quartus Prime da Intel® e testado num kit didático com Field-Programmable Gate Array (FPGA) a fim de verificar o seu comportamento em termos de processamento de instruções em relação ao microprocessador Plasma original que usa um sistema operacional baseado em tarefas por software. Os resultados experimentais repetiram os dados da tese de Leandro P. Dantas de que o sistema IHM se torna mais eficiente quanto mais trocas de tarefas tem no sistema. Eles também mostraram que o papel do sistema IHM de realizar o escalonamento de tarefas economiza mais tempo da CPU (1015 ciclos de clock com algoritmo utilizado neste estudo) do que o papel de realizar a troca de contexto (140 ciclos de clock), o que não foi observado na tese de Leandro P. Dantas
- Representação de conhecimento no domínio da navegação social em robôs de serviço(2022) Pimentel, A. M. P.A navegação social é uma área de pesquisa que vem crescendo nos últimos anos. Entretanto, compartilhar ambientes com o ser humano de forma socialmente aceitável ainda é um desafio tanto no ambiente doméstico quanto comercial. A precisão e a segurança são características necessárias na navegação social e constituem um desafio, no entanto, o conforto humano é o principal objetivo nas interações que envolvem seres humanos. Como contribuições deste trabalho, é proposta a representação de conhecimento no domínio da navegação social utilizando ontologia, sendo utilizada aqui para gerar camadas de mapas semânticos para a navegação de robô social. Neste trabalho é apresentado o problema atual da navegação social em robôs de serviço, os principais conceitos relacionados com esta área, uma revisão do estado da arte e é proposto um modelo de navegação social utilizando ontologia como base para representação de conhecimento neste domínio. Portanto, este trabalho tem como objetivo, especificar uma nova ontologia que possa unificar e formalizar a representação de conhecimento no domínio da navegação social encontrados na literatura, enquanto otimiza de forma incremental os métodos utilizados em ontologia aplicada na navegação de robôs móveis. Este trabalho também traz o estudo comparativo de métodos, que estão diretamente ligados à segurança, à naturalidade dos robôs e ao conforto do ser humano. Também foi aplicado um estudo de caso incremental na plataforma Home Environment Robot Assistent (HERA) promovendo uma melhor navegação social. Vários ambientes, tipos de obstáculos, pessoas simuladas de forma estática e dinâmica utilizando modelos de força social, interagindo com outras pessoas e objetos foram avaliados, variando algoritmos de planejamento local e global, e mapas de custos. Aspectos de segurança e precisão em termos de tempo e espaço estimados, assim como o respeito ao espaço pessoal foram observados. Experimentos exaustivos foram realizados para cada método ou combinação de ambiente utilizando os parâmetros otimizados de cada método em um total de 84.120 experimentos. Com esses resultados, foi possível selecionar uma configuração para este sistema de navegação, enquanto o modelo de representação de conhecimento com ontologia foi desenvolvido. Nos experimentos reais foi possível observar a influência de uma navegação comum e de uma navegação social sobre o conforto do ser humano. Ao final deste estudo, é apresentada a estrutura atual da ontologia para navegação social como contribuição para a literatura e uma navegação otimizada com base nesta ontologia aplicada a plataforma robótica HERA