Repositório do Conhecimento Institucional do Centro Universitário FEI
 

Heavy Ions Testing of an All-Convolutional Neural Network for Image Classification Evolved by Genetic Algorithms and Implemented on SRAM-Based FPGA

N/D

Tipo de produção

Artigo de evento

Data de publicação

2019-09-20

Periódico

2019 19th European Conference on Radiation and Its Effects on Components and Systems, RADECS 2019

Editor

Citações na Scopus

0

Autores

BENEVENUTI, F.
DE OLIVEIRA, A. B.
LOPES, I. C.
KASTENSMIDT, F. L.
ADDED, N.
AGUIAR, V. A P.
MEDINA, N.H.
Marcilei Aparecida Guazzelli

Orientadores

Resumo

This work investigates the vulnerability of an image classification engine under heavy-ions accelerated irradiation. The engine is based on all-convolutional neural-network trained with the GTSRB traffic sign recognition benchmark and embedded into 28nm SRAM-based FPGA.

Citação

BENEVENUTI, F.; DE OLIVEIRA, A. B.; LOPES, I. C.; KASTENSMIDT, F. L.; ADDED, N.; AGUIAR, V. A P.; MEDINA, N.H.; GUAZZELLI, M. A. Heavy Ions Testing of an All-Convolutional Neural Network for Image Classification Evolved by Genetic Algorithms and Implemented on SRAM-Based FPGA. 2019 19th European Conference on Radiation and Its Effects on Components and Systems, RADECS 2019, Sept. 2019.

Palavras-chave

Keywords

deep learning; neural networks; reliability; single-event effects; SRAM-based FPGA; traffic-sign recognition

Assuntos Scopus

Convolutional neural network; Deep learning; Heavy ion testing; Images classification; Neural-networks; Single event effects; SRAM-based FPGA; Traffic sign recognition

Coleções

Avaliação

Revisão

Suplementado Por

Referenciado Por