Otimização de reator de polimerização

Carregando...
Imagem de Miniatura
Citações na Scopus
Tipo de produção
Trabalho de Conclusão de Curso
Data
2021-12-10
Autores
Piedade, Fernanda Gomes
Camilo, Lara Cristina da Silva
Prevedel, Matheus Menna Barreto
Nascimento, Natália Bravin
Orientador
Novazzi, Luís Fernando
Periódico
Título da Revista
ISSN da Revista
Título de Volume
Citação
Texto completo (DOI)
Palavras-chave
otimização,metacrilato de metila,polimerização,optimization,methyl methacrylate,polymerization
Resumo
A indústria de tintas e vernizes no país evoluiu muito nos últimos anos devido à crescente necessidade dos mercados nacional e internacional, o que exigiu das empresas o fornecimento de produtos e serviços com melhor qualidade. Nessa indústria, o poli metacrilato de metila (PMMA) é um produto relevante, logo é necessário garantir que este apresente suas principais propriedades mecânicas e químicas dentro das especificações exigidas. Tais propriedades como resistência mecânica e química são afetadas por características poliméricas como massa molar média, índice de fluidez, compatibilidade entre o polímero e o solvente, dentre outras, que são amplamente influenciadas pelas condições de processo. Sendo assim, este trabalho propõe avaliar e otimizar o processo de polimerização de metacrilato de metila (MMA) realizado em um reator semi-batelada, cuja reação é conduzida em solução, aplicando como solvente o xilol e peróxido de benzoíla como iniciador da polimerização. Para isso, estudou-se o modelo matemático que descreve o sistema e, através do software Matlab, simulou-se e aprimorou-se as condições operacionais da polimerização do metacrilato de metila (MMA) em um reator industrial. A partir do ajuste de parâmetros cinéticos do modelo aplicado, que objetivavam a minimização do erro quadrático entre a conversão experimental e a prevista pelo modelo, foi possível adequar o valor para a energia de ativação de decomposição do iniciador, cujo valor é de 131,87 kJ/mol, permitindo que o reator industrial fosse melhor representado pelo modelo. Com isso foi possível avaliar as condições operacionais e realizar a otimização do processo, cujos principais resultados foram a diminuição da temperatura de 116°C do meio reacional para 110°C, e a redução do tempo de polimerização em até uma hora e do tempo de adição em até uma hora e meia, sem alterar a relação monômero/iniciador. Para esses resultados o com grau de conversão e o peso molecular médio ponderal mínimos atingido são de 97,73% e 6,29E4 g/mol respectivamente. Entretanto a taxa de calor gerada na polimerização excede em 50% o valor limite de 4,5E5 W, sendo necessária uma futura análise econômica para verificar a possibilidade de expandir o potencial de resfriamento atual.
The paint and varnish industry in the country has been developed in recent years due to the needs of growing of the national and international markets, which required companies to provide better quality of their products and services. In this industry, methyl polymethacrylate (PMMA) is a relevant product, so it is necessary to ensure that it presents its main mechanical and chemical properties within the required specifications. The properties that could be mentioned are the mechanical and chemical resistance, that is affected by polymeric characteristics such as average weight, fluidity index, compatibility between polymer and solvent, among others, which is widely influenced by process conditions. Therefore, this work proposes to evaluate and optimize the process of polymerization of methyl methacrylate (MMA) performed in a semi-batch reactor, in which the reaction is conducted in solution, using xylol as the solvent and benzoyl peroxide as the initiator of polymerization. To achieve this aim, it was proposed to study the mathematical model that describes the system, using Matlab software to simulate and optimize the operational conditions of methyl methacrylate (MMA) polymerization in an industrial reactor. As of the adjustment of kinetic parameters of the model, which had the objective to minimize the quadratic error between the experimental conversion and that predicted by the model, it was possible to adjust the value for the initiator's decomposition activation energy, which value is 131.87 kJ/mol, allowing the industrial reactor to be better represented by the model. Therewith it was possible to evaluate the operational conditions and perform the optimization of the process, which main results were the decrease of the temperature from 116 °C of the reaction to 110 °C, the reduction of the olymerization time in until one hour and the time of addition by up to one and a half hour, without changing the monomer/initiator ratio. Therefore, the minimum conversion and average molecular weight achieved are 97.73% and 6.29 .104 g/mol respectively. However, the heat rate generated in polymerization exceeds by 50% the limit value of 4.5 .105 W, and a future economic analysis is necessary to be done to verify the possibility of expanding the current cooling potential of the process.