Análise da utilização de polímeros para estabilização de camadas de base em pavimentos semirrígidos

Carregando...
Imagem de Miniatura
Citações na Scopus
Tipo de produção
Trabalho de Conclusão de Curso
Data
2022-06-21
Autores
Silva, Anderson Rolemberg da
Liu, Daniel Maicon
Rodrigues, Gustavo Larios
Nakagawa, Kevin Ryu
Orientador
Cava, Felipe Hernandes
Periódico
Título da Revista
ISSN da Revista
Título de Volume
Citação
Texto completo (DOI)
Palavras-chave
estabilização polimérica,BGTC,copolímero,pavimentos semirrígidos,polymer-stabilized,cement treated base,copolymer,semi-rigid pavement
Resumo
O cimento é um dos materiais mais utilizados no mundo, porém seu processo produtivo é muito nocivo para o meio ambiente, operários da fábrica e pessoas que vivem nos arredores. Os respectivos impactos são a geração de particulados suspensos com óxidos químicos, contaminação dos solos durante a extração de matéria prima, emissão de CO2 durante a fase de clinquerização do cimento e alto índice de consumo energético para operação de maquinário. Atualmente o uso do cimento é muito comum para estabilização de camadas granulares, como a brita graduada tratada com cimento para bases e sub-bases de pavimentos. Apesar do aumento de rigidez da camada, o baixo consumo de cimento resulta em retração e leva ao aparecimento de trincas. As trincas de retração podem refletir para o revestimento asfáltico em casos do emprego da BGTC como material de base. No presente trabalho foi analisada a substituição do cimento por polímero liquido à base de éster acrílico para estabilização de camadas granulares de pavimentos semirrígidos. Foi definido um projeto de mistura e teor de umidade ótima para esta e, a partir desses parâmetros, realizada uma análise comparativa entre o desempenho da BGTC convencional e do material estabilizado com polímero líquido por meio de ensaios laboratoriais, como resistência à tração por compressão diametral, resistência à compressão axial, ensaio de retração e ensaio de flexão a 4 pontos. Com os resultados foi possível observar o comportamento das misturas com diferentes ligantes em concentrações variadas. Apesar do bom desempenho do polímero em relação à resistência mecânica, houve acentuada retração e foi possível identificar os efeitos gerados pela exposição ao calor bem como a diferença de resistência à compressão axial para dois diferentes métodos de compactação
Cement is one of the most used materials in the world, but its production process is very harmful to the environment, factory workers and people living in the surroundings. The respective impacts are the generation of suspended particulates with chemical oxides, soil contamination during raw material extraction, CO2 emission during the cement clinkerization phase and high energy consumption rate for machinery operation. Currently, the use of cement is very common to stabilize granular layers, such as graded gravel treated with cement for pavement bases and sub-bases. Despite the increased rigidity of the layer, the low cement consumption results in shrinkage and leads to the appearance of cracks. Shrinkage cracks can reflect to the asphalt coating in cases where BGTC is used as a base material. In the present work, the replacement of cement by liquid polymer with an acrylic ester basis for stabilization of granular layers of semi-rigid pavements was analyzed. A mixture design was defined, and for it, an optimal moisture content, based on these parameters, a comparative analysis was carried out between the performance of conventional BGTC and the material stabilized with liquid polymer through laboratory tests, such as tensile strength by diametrial compression, unconfined compression strength, drying shrinkage and 4-point bending test. With the results it was possible to observe the behavior of mixtures with different binders in different concentrations. Despite the good performance of the polymer in terms of mechanical strength, there was significant shrinkage and it was possible to identify the effects generated by exposure to heat as well as the difference in axial compressive strength for two different compaction methods.