Synergism between tribological parameters – “micro-abrasive concentration level”, “micro-abrasive particle type”, and “liquid type” of a micro-abrasive slurry composition on the micro-abrasive wear behaviour of Fe-30Al-6Cr (at.%) iron aluminide alloy
Nenhuma Miniatura disponível
Citações na Scopus
3
Tipo de produção
Artigo
Data
2023-07-15
Autores
DE PAULA, A. F. M.
BORGES, D. F. L.
DA SILVA F. C.
ROSSINO, L. S.
MANFRINATO, M. D.
VERMA, V.
LUNA-DOMINGUEZ, J. H.
MAGNABOSCO, R.
SCHON, C. G.
Ronaldo Câmara Cozza
BORGES, D. F. L.
DA SILVA F. C.
ROSSINO, L. S.
MANFRINATO, M. D.
VERMA, V.
LUNA-DOMINGUEZ, J. H.
MAGNABOSCO, R.
SCHON, C. G.
Ronaldo Câmara Cozza
Orientador
Periódico
Wear
Título da Revista
ISSN da Revista
Título de Volume
Citação
DE PAULA, A. F. M.; BORGES, D. F. L.; DA SILVA F. C.; ROSSINO, L. S.; MANFRINATO, M. D.; VERMA, V.; LUNA-DOMINGUEZ, J. H.; MAGNABOSCO, R.; SCHON, C. G.; COZZA, R. C. Synergism between tribological parameters – “micro-abrasive concentration level”, “micro-abrasive particle type”, and “liquid type” of a micro-abrasive slurry composition on the micro-abrasive wear behaviour of Fe-30Al-6Cr (at.%) iron aluminide alloy.
Wear, jun. 2023.
Texto completo (DOI)
Palavras-chave
Resumo
© 2023 Elsevier B.V.Observing the importance of intermetallic materials in mechanical and metallurgical applications, the present work investigates the micro-abrasive wear behaviour in a model–carbide reinforced iron aluminide system. Fe–30Al–6Cr (at.%) iron aluminide alloy with carbon additions “as cast” specimen was tested. Micrographs revealed a continuous network of eutectic chromium carbides at the interdendritic regions of the D03 ordered aluminide matrix. AISI 52100 bearing steel sphere of diameter 25.4 mm (1″) was used for wear tests as counter body. Micro-abrasive slurries were prepared with micro-abrasive particles of black silicon carbide – SiC or alumina – Al2O3, with distilled water or glycerin, in four possible combinations of materials ⇒ “Al2O3 + H2O distilled”, “Al2O3 + glycerin”, “SiC + H2O distilled” and “SiC + glycerin”. Further, keeping the normal force constant and together with different levels of micro-abrasive slurries compositions and sliding distances, a factorial experiment was designed. Result analysis showed that wear volume increased with an increase in micro-abrasive slurry concentration, independently of the type of micro-abrasive particle and liquid. However, the micro-abrasive slurries prepared with SiC and distilled water provided larger wear volumes than the volumes of wear reported under the micro-abrasive slurries formulated with Al2O3 and glycerin. The reason is attributed to the high hardness of SiC particles resulting in high abrasion, whereas the Al2O3 – glycerin slurry lubrication effect restricted high wear. Wear micrographs revealed a change in worn surface morphology from “grooving micro-abrasion” to “rolling micro-abrasion” due to an increase in sliding distance and micro-abrasive slurry concentration.