Heuristic selection of actions in multiagent reinforcement learning

Nenhuma Miniatura disponível
Citações na Scopus
40
Tipo de produção
Artigo de evento
Data de publicação
2007
Autores
Bianchi R.A.C.
Ribeiro C.H.C.
Costa A.H.R.
Orientador
Periódico
IJCAI International Joint Conference on Artificial Intelligence
Título da Revista
ISSN da Revista
Título de Volume
Citação
Texto completo (DOI)
Palavras-chave
Resumo
This work presents a new algorithm, called Heuristically Accelerated Minimax-Q (HAMMQ), that allows the use of heuristics to speed up the well-known Multiagent Reinforcement Learning algorithm Minimax-Q. A heuristic function H that influences the choice of the actions characterises the HAMMQ algorithm. This function is associated with a preference policy that indicates that a certain action must be taken instead of another. A set of empirical evaluations were conducted for the proposed algorithm in a simplified simulator for the robot soccer domain, and experimental results show that even very simple heuristics enhances significantly the performance of the multiagent reinforcement learning algorithm.
Coleções