Logic-probabilistic model for event recognition in a robotic search and rescue scenario
Nenhuma Miniatura disponível
Citações na Scopus
1
Tipo de produção
Artigo de evento
Data
2014
Autores
GURZONI, J. A.
COZMAN, F. G.
MARTINS, M. F.
Paulo Santos
COZMAN, F. G.
MARTINS, M. F.
Paulo Santos
Orientador
Periódico
Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics
Título da Revista
ISSN da Revista
Título de Volume
Citação
GURZONI, J. A.; COZMAN, F. G.; MARTINS, M. F.; SANTOS, P. E. Logic-probabilistic model for event recognition in a robotic search and rescue scenario. Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, 2014.
Texto completo (DOI)
Palavras-chave
Resumo
© 2014 IEEE.This paper presents initial results towards the development of a logic-based probabilistic event recognition system capable of learning and inferring high-level joint actions from simultaneous task execution demonstrations on a search and rescue scenario. We adopt a probabilistic extension of the Event Calculus defined over Markov Logic Networks (MLN-EC). This formalism was applied to learn and infer the actions of human operators teleoperating robots in a real-world robotic search and rescue task. Experimental results in both simulation and real robots show that the probabilistic event logic can recognise the actions taken by the human teleoperators in real world domains containing two collaborating robots, even with uncertain and noisy data.