Good codes from metacyclic groups II

dc.contributor.authorSamir Assuena
dc.contributor.authorOrcidhttps://orcid.org/0000-0003-2496-6208
dc.contributor.authorOrcidhttps://orcid.org/0000-0003-2496-6208
dc.date.accessioned2022-01-12T21:55:30Z
dc.date.available2022-01-12T21:55:30Z
dc.date.issued2022-02-01
dc.description.abstract© 2022 World Scientific Publishing Company.In this paper, we consider semisimple group algebras qG of split metacyclic groups over finite fields. We construct left codes in qG in the case when the order G is pmâ.,"n, where p and â.,"are different primes such that gcd(q,p,â.,") = 1 extend the construction described in a previous paper, determine their dual codes and find some good codes.
dc.description.issuenumber2
dc.description.volume21
dc.identifier.citationASSUENA, S. Good codes from metacyclic groups II. Journal of Algebra and its Applications. Journal of Algebra and its Applications, v, 21, n. 2, feb. 2022.
dc.identifier.doi10.1142/S0219498822500402
dc.identifier.issn0219-4988
dc.identifier.urihttps://repositorio.fei.edu.br/handle/FEI/3662
dc.relation.ispartofJournal of Algebra and its Applications
dc.rightsAcesso Restrito
dc.subject.otherlanguagefinite groups
dc.subject.otherlanguageprimitive idempotents
dc.subject.otherlanguageSemisimple group algebras
dc.subject.otherlanguagesplit metacyclic groups
dc.titleGood codes from metacyclic groups II
dc.typeArtigo
fei.scopus.citations1
fei.scopus.eid2-s2.0-85096920727
fei.scopus.updated2024-12-01
fei.scopus.urlhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85096920727&origin=inward
Arquivos
Coleções