A kernel maximum uncertainty discriminant analysis and its application to face recognition
dc.contributor.author | Carlos E. Thomaz | |
dc.contributor.author | GIRALDI, G. A. | |
dc.contributor.authorOrcid | https://orcid.org/0000-0001-5566-1963 | |
dc.date.accessioned | 2023-08-26T23:50:05Z | |
dc.date.available | 2023-08-26T23:50:05Z | |
dc.date.issued | 2009-02-05 | |
dc.description.abstract | In this paper, we extend the Maximum uncertainty Linear Discriminant Analysis (MLDA), proposed recently for limited sample size problems, to its kernel version. The new Kernel Maximum uncertainty Discriminant Analysis (KMDA) is a two-stage method composed of Kernel Principal Component Analysis (KPCA) followed by the standard MLDA. In order to evaluate its effectiveness, experiments on face recognition using the well-known ORL and FERET face databases were carried out and compared with other existing kernel discriminant methods, such as Generalized Discriminant Analysis (GDA) and Regularized Kernel Discriminant Analysis (RKDA). The classification results indicate that KMDA performs as well as GDA and RKDA, with the advantage of being a straightforward stabilization approach for the within-class scatter matrix that uses higher-order features for further classification improvements. | |
dc.description.firstpage | 341 | |
dc.description.lastpage | 346 | |
dc.description.volume | 1 | |
dc.identifier.citation | THOMAZ, C. E.; GIRALDI, G. A. A kernel maximum uncertainty discriminant analysis and its application to face recognition. VISAPP 2009 - Proceedings of the 4th International Conference on Computer Vision Theory and Applications, v. 1, p. 341-346, feb. 2009. | |
dc.identifier.uri | https://repositorio.fei.edu.br/handle/FEI/5013 | |
dc.relation.ispartof | VISAPP 2009 - Proceedings of the 4th International Conference on Computer Vision Theory and Applications | |
dc.rights | Acesso Restrito | |
dc.subject.otherlanguage | Face recognition | |
dc.subject.otherlanguage | Limited sample size problems | |
dc.subject.otherlanguage | Non-linear discriminant analysis | |
dc.title | A kernel maximum uncertainty discriminant analysis and its application to face recognition | |
dc.type | Artigo de evento | |
fei.scopus.citations | 2 | |
fei.scopus.eid | 2-s2.0-70349680786 | |
fei.scopus.subject | Classification results | |
fei.scopus.subject | Face database | |
fei.scopus.subject | Generalized discriminant analysis | |
fei.scopus.subject | Higher order | |
fei.scopus.subject | Kernel discriminant analysis | |
fei.scopus.subject | Kernel principal component analysis | |
fei.scopus.subject | Limited sample size problems | |
fei.scopus.subject | Linear discriminant analysis | |
fei.scopus.subject | Non-linear discriminant analysis | |
fei.scopus.subject | Sample size problems | |
fei.scopus.subject | Two-stage methods | |
fei.scopus.subject | Within-class scatter matrix | |
fei.scopus.updated | 2025-02-01 | |
fei.scopus.url | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=70349680786&origin=inward |