Machine learning algorithm accurately detects fMRI signature of vulnerability to major depression

Nenhuma Miniatura disponível
Citações na Scopus
50
Tipo de produção
Artigo
Data
2015
Autores
Sato J.R.
Moll J.
Green S.
Deakin J.F.W.
Thomaz C.E.
Zahn R.
Orientador
Periódico
Psychiatry Research - Neuroimaging
Título da Revista
ISSN da Revista
Título de Volume
Citação
Sato, João R.; MOLL, JORGE; GREEN, SOPHIE; DEAKIN, JOHN F.W.; THOMAZ, CARLOS E.; ZAHN, ROLAND. Machine learning algorithm accurately detects fMRI signature of vulnerability to major depression. Psychiatry Research. Neuroimaging (Print), v. 233, n. 2, p. 289-291, 2015.
Palavras-chave
Resumo
© 2015 Published by Elsevier Ireland Ltd.Standard functional magnetic resonance imaging (fMRI) analyses cannot assess the potential of a neuroimaging signature as a biomarker to predict individual vulnerability to major depression (MD). Here, we use machine learning for the first time to address this question. Using a recently identified neural signature of guilt-selective functional disconnection, the classification algorithm was able to distinguish remitted MD from control participants with 78.3% accuracy. This demonstrates the high potential of our fMRI signature as a biomarker of MD vulnerability.

Coleções