Departamento de Matemática
URI Permanente desta comunidade
Navegar
Navegando Departamento de Matemática por Assunto "EEG"
Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
Artigo de evento A different statistical approach aiming at EEG parameter investigation for brain machine interface use(2014-03-06) DE CASTRO, M. C. F.; Fábio GerabA lot of effort has been made to investigate EEG features that could better represent signal characteristics. The results are usually based on the best mean recognition rates and statistical analysis is done only when different methods are compared. In this work, we propose a new approach that applies multiple rate intercomparisons based on large samples aiming at detecting differences among treatments in order to recognize their importance for the classification rates. Ten frequency band compositions expressed by power spectral density averages were extracted from 8 EEG channels during 4 motor imageries, and spatial feature selections were also considered during the recognition process. Classification rate in large samples can be represented by a normal distribution and, for multiple rate inter-comparisons, the level of significance was corrected based on the Bonferroni Method. The variables were considered to be independents and the test was performed as non paired samples in a very conservative approach. The results showed that there are significant differences among cases of spatial feature selection and thus the considered electrodes are important parameters. On the other hand, considering or not the Delta and Theta bands along with different arrangements for Gamma band resulted in no significant difference. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved.