Repositório do Conhecimento Institucional do Centro Universitário FEI
 

Artigo de evento

URI permanente para esta coleçãohttps://repositorio.fei.edu.br/handle/FEI/5120

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 1 de 1
  • Artigo de evento 2 Citação(ões) na Scopus
    A kernel maximum uncertainty discriminant analysis and its application to face recognition
    (2009-02-05) Carlos E. Thomaz; GIRALDI, G. A.
    In this paper, we extend the Maximum uncertainty Linear Discriminant Analysis (MLDA), proposed recently for limited sample size problems, to its kernel version. The new Kernel Maximum uncertainty Discriminant Analysis (KMDA) is a two-stage method composed of Kernel Principal Component Analysis (KPCA) followed by the standard MLDA. In order to evaluate its effectiveness, experiments on face recognition using the well-known ORL and FERET face databases were carried out and compared with other existing kernel discriminant methods, such as Generalized Discriminant Analysis (GDA) and Regularized Kernel Discriminant Analysis (RKDA). The classification results indicate that KMDA performs as well as GDA and RKDA, with the advantage of being a straightforward stabilization approach for the within-class scatter matrix that uses higher-order features for further classification improvements.