Engenharia Mecânica
URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/23
Navegar
2 resultados
Resultados da Pesquisa
Agora exibindo 1 - 2 de 2
- Effect of the hardening rules on the creep age forming prediction of 7050 aluminum alloy with experimental verification(2018) Oliveira M.C.; Delijaicov S.; Bortolussi R.© 2018, The Brazilian Society of Mechanical Sciences and Engineering.The creep age forming (CAF) has been used in the aerospace sector due to its attractive characteristics that allows producing a component with low residual stress. The process has been studied from the finite-element simulations which are used mainly to predict the springback. However, to accomplish the simulation, it is necessary to set the CAF constitutive equations in the finite-element software. In addition, it is also necessary to define the hardening rule which is applied to determine the creep strain. This work aims to investigate CAF applying the finite-element analysis with the time-hardening rule and strain-hardening rule and thus predicting creep strain, stress relaxation, and springback. The finite-element simulations were accomplished in dies with single and double curvatures and the blank’s material was the alloy AA7050. Furthermore, the Marin–Pao model was implemented in the MSC.Marc software through a user subroutine. This model was fitted to the creep experimental curves and it generated good agreement with the experimental data. The results of the simulations that used the time-hardening rule were similar to the strain-hardening rule, and therefore, if it had been chosen a hardening rule, it would not have generated a significant impact in the CAF simulation results. At the end, the simulated springback was compared to the experimental springback from the literature and the percentage error ranged from 0.46% to 15.33% that indicate the proximity with the literature data. Moreover, other experimental validation was performed, and when compared to the results of this methodology, the calculated error in springback was 6.3%.
- CAF—a simplified approach to calculate springback in Al 7050 alloys(2017) Brandao F.M.; Delijaicov S.; Bortolussi R.© 2017, Springer-Verlag London.Aeronautical industries have looked for news fabrication processes to reduce the costs and the waste of the material during milling operations. One of these new processes is the creep age forming (CAF). The purpose of this work was based on springback analysis during the forming of single- and double-curved sheets of Al 7050 by the process of CAF. A simplified model based on a Norton power law was used in order to, alongside with a program of finite elements, allow the calculation of springback after the process. The experimental verification was carried out. Beside the springback results, other results were a decrease in the Young’s module of 11.5% in the creep aging temperature, in relation with ambient temperature during the CAF process and the variation of aluminum alloy’s yield stress during the process. The springback effect increased on the basis of aging time and then decreased due to intense aging of the alloy; an ideal time of 8 h is estimated for the Al 7050 alloy to carry out the CAF process. The research is limited to the use of the simplified model and its applicable results to Al 7050 alloys. Al 7050 is aligned with its vast use in the aeronautical industry, and the simplified model’s application may rapidly offer the necessary values of springback for the tooling project.