Repositório do Conhecimento Institucional do Centro Universitário FEI
 

Engenharia Mecânica

URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/23

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Artigo de evento 0 Citação(ões) na Scopus
    Assessment of Different More Electric and Hybrid-Electric Configurations for Long-Range Multi-Engine Aircraft
    (2021-06-28) GIMENEZ, F. R.; Carlos Mady; HENRIQUES, I. B.
    © ECOS 2021 - 34th International Conference on Efficency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems.This work intends to assess the characteristics, penalties, gains, and challenges through the Electrification and Hybridization process for long-range aircraft. A system, engines and mission level analysis was created focusing on a Thermodynamics and financial approach. A conventional reference aircraft was compared with enhanced more electric and hybrid-electric versions of itself. These new models may carry batteries, which supply the aircraft systems and/or engines, or not. State-of-the-art propulsion and systems’ architecture were also implemented within the cutting-edge airplanes. A full factorial analysis was conducted to vary the batteries’ energy density and the hybridization ratio for the hybrid configurations. A typical mission profile was developed to match the boundary conditions in all cases. Hybrid powertrains confirmed superior behavior than any other cases. The least efficient hybrid configuration, with intermediate battery choices, reduced 10.7% the fuel consumption upon the conventional aircraft and 1.0% facing the battery powered more electric option. Moreover, both baseline models were also surpassed by the worst midway-battery hybrid airplane by 3.6% and 1.0% in overall mission exergy efficiency. Notwithstanding the markets’ actual low battery density, long-range hybrid-electric aircraft will take substantial time to become viable. Nevertheless, only after a significant period, the use of hybrid-electric aircraft will be economically feasible. In the end, preliminary well-to-wake CO2 emissions analysis was developed in all cases for different electricity mix scenarios to observe the environmental impact and viability of the conventional and state-of-the-art configurations.
  • Artigo 6 Citação(ões) na Scopus
    Assessment of different more-electric and hybrid-electric configurations for long-range multi-engine aircraft
    (2023-03-15) GIMENEZ, F. R.; Carlos Mady; HENRIQUES, I. B.
    © 2023 Elsevier LtdIn this study, the characteristics, penalties, gains, and challenges in the electrification and hybridization process for long-range aircraft were investigated. A system and mission analysis was conducted on thermodynamics and cost. A reference aircraft was compared with other more-electric and hybrid-electric versions of the same type. These latter versions may carry batteries to supply the aircraft system and/or engine. A state-of-the-art propulsion and system architecture were also implemented in these innovative aircraft. A full factorial analysis was conducted to vary the battery energy density and the hybridization ratio for the hybrid configurations. A typical mission profile was developed to match the boundary conditions in all cases. The hybrid powertrains were confirmed in our results as exhibiting superior behavior compared to those of the other cases. The least efficient hybrid configuration, which employed an intermediate battery choice, reduced fuel consumption by 10.7% in the conventional aircraft and by 1% in the battery-powered more-electric type. Moreover, both baseline models were surpassed by the worst intermediate-battery hybrid aircraft by 3.6% and 1% in terms of overall mission exergy efficiency. Considering the actual low density of batteries available on the market, long-range hybrid-electric aircraft will require substantial time to become viable.