Engenharia Mecânica
URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/23
Navegar
2 resultados
Resultados da Pesquisa
- Energy and exergy analysis of an absorption and mechanical system for a dehumidification unit in a gelatin factory(2021-04-05) LIMA, L. S.; Carlos Mady© 2020 by the authors.In this paper, an energy and exergy analysis is applied to the air dehumidification unit of a liquid desiccant system in an industrial gelatin conveyor dryer. The working fluid is a binary solution of lithium chloride (LiCl) in water. Dry air is used in order to decrease the amount of liquid in the gelatin. Therefore, the environmental air must have its absolute humidity reduced from about 12 g/kg to the project target, which is 5 g/kg. The process is a cycle using an absorption desiccant unit (LiCl in water), where the weak solution absorbs water vapor from the air. In the regenerator, condensation of the solution (desorption) from the moist air occurs. As a result, the steam consumption of the desorber and electrical power used for the vapor compression chiller (with ammonia, NH3, as working fluid) are the primary sources of cost for the factory. To improve the plant’s energy and exergy behaviors, the process is evaluated using a mathematical model of the system processes. In addition, we evaluate the substitution of the vapor compression chiller by an absorption unit (lithium bromide (LiBr) in water). The performance indicators of the compression vapor systems showed the best results. Even when using the condenser’s energy to pre-heat the solution, the installed system proved to be more effective.
- Exergy analysis of the musculoskeletal system efficiency during aerobic and anaerobic activities(2018) Spanghero G.M.; Albuquerque C.; Fernandes T.L.; Hernandez A.J.; Mady C.E.K.© 2018 by the authors.The first and second laws of thermodynamics were applied to the human body in order to evaluate the quality of the energy conversion during muscle activity. Such an implementation represents an important issue in the exergy analysis of the body, because there is a difficulty in the literature in evaluating the performed power in some activities. Hence, to have the performed work as an input in the exergy model, two types of exercises were evaluated: weight lifting and aerobic exercise on a stationary bicycle. To this aim, we performed a study of the aerobic and anaerobic reactions in the muscle cells, aiming at predicting the metabolic efficiency and muscle efficiency during exercises. Physiological data such as oxygen consumption, carbon dioxide production, skin and internal temperatures and performed power were measured. Results indicated that the exergy efficiency was around 4% in the weight lifting, whereas it could reach values as high as 30% for aerobic exercises. It has been shown that the stationary bicycle is a more adequate test for first correlations between exergy and performance indices.