Engenharia Mecânica
URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/23
Navegar
2 resultados
Resultados da Pesquisa
- Biomechanical Analysis of Tissue Engineering Construct for Articular Cartilage Restoration—A Pre-clinical Study(2022-04-15) FARIA, R. R. DE; MAIZATO, M. J. S.; CESTARI, I. A.; HERNANDEZ, A. J.; BUENO, D. F.; Roberto Bortolussi; Cyro Albuquerque; FERNANDES, T. L.© 2022, Springer Nature Switzerland AG.The chondral lesion and osteoarthritis are conditions associated with an economic burden, since if left untreated may cause changes in the biomechanics of the joint and result in several injuries considered highly disabling to the individual. Mesenchymal Stem Cells (MSCs) have the immunomodulatory capacity and paracrine signaling that are useful for tissue bioengineering to treat bone and cartilage injuries. To the best of our knowledge, there is no institution in Brazil studying cartilage biomechanical properties in Good Manufacturing Practice (GMP) technique. Therefore, this study aims to describe biomechanics analysis for cartilage restoration by tissue engineering and cell therapy treatments in a GMP translational large animal model. A controlled experimental study in fourteen Brazilian miniature pigs was performed, using scaffold-free Tissue Engineering Construct (TEC) from dental pulp and synovial MSCs with 6 months follow-up. To compare the cartilage with and without TEC, indentation and maximum compressive tests were performed, as well as Finite Element model to simulate the osteochondral block and characterize its properties. The Young’s Modulus of each sample was determined, and the outcomes of maximum compressive test demonstrated the cartilage integrity. The proposed method was feasible and capable to properly evaluate articular cartilage restoration.
- Tribological Characterization of the ASTM F138 Austenitic Stainless-Steel Treated with Nanosecond Optical Fiber Ytterbium Laser for Biomedical Applications(2022-01-05) DE MATOS MACEDO, M.; BERNARDES, G. V. R.; LUNA-DOMINGUEZ, J. H.; VERMA. V.; Ronaldo Câmara Cozza© 2022, Springer Nature Switzerland AG.This study investigated the tribological behavior of the ASTM F138 austenitic stainless-steel – which is generally used in biomedical applications – treated with laser. Metallic biomaterial surfaces were treated under different nanosecond optical fiber ytterbium laser pulse frequencies, with the purpose to increase their surface hardness. Further, ball-cratering wear tests were conducted to analyze their tribological behavior on the basis of their wear volume and coefficient of friction. The obtained results showed that the nanosecond optical fiber ytterbium laser pulse frequency influenced the surface hardness of each specimen and, consequently, on the wear resistance of the ASTM F138 austenitic stainless-steel biomaterial. With an increase of laser pulse frequency, a decrease in the wear volume of the worn biomaterial was observed – which is the main tribological parameter to study the wear resistance of a metallic biomaterial. In contrast, the coefficient of friction values were found to be independent of the laser pulse frequency, surface hardness and the wear volume of the specimen.