Repositório do Conhecimento Institucional do Centro Universitário FEI
 

Engenharia Mecânica

URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/23

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 3 de 3
  • Artigo de evento 0 Citação(ões) na Scopus
    Simulation of respiratory gas exchange in the placenta
    (2018-06-17) CENZI, J.; Cyro Albuquerque; Carlos Mady
    © 2018 University of Minho. All rights reserved.This work evaluates the gas exchange between a fetus circulatory system and the mother’s, which occurs in the placenta. Oxygen, carbon dioxide and carbon monoxide transport were analyzed. Carbon monoxide is one of the most common air pollutants in cities and it has a significant impact in physiological conditions even in low concentration. These effects are particularly prejudicial for pregnant women, fetus and newborn babies. A carbon monoxide transportation model, from literature, is adapted to simulate a pregnant woman. The respiratory gas exchange in the placenta is modeled, so it is possible to evaluate the concentration of the different gases. In this way, it is possible to assess carbon monoxide concentration in fetus and evaluate its effects. Exergy analysis are performed for both mother’s and fetus’ respiratory systems, in other to compare it to the respiratory system of a male adult. It is possible to verify that the fetus was more affected by CO poisoning than the adults, although it HbCO rate is significantly reduced compared to maternal’s.
  • Artigo 7 Citação(ões) na Scopus
    Phenomenological and thermodynamic model of gas exchanges in the placenta during pregnancy: A case study of intoxication of carbon monoxide
    (2019-11-05) CENZI, J. R.; Cyro Albuquerque; MADY, C. E. K.
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland.The present work simulates the transport of oxygen, carbon dioxide, and carbon monoxide between a fetus’s circulatory system and the mother’s. The organ responsible for this exchange is the placenta. Carbon monoxide is a common air pollutant, and it impacts the physiological conditions even in low concentration. The impacts of carbon monoxide are especially dangerous for pregnant women, fetuses, and newborn babies. A model of carbon monoxide transport, from the literature, is modified to simulate a pregnant woman (original model was a male), therefore changing some parameters to express the adjusted respiratory system. It was considered the gas exchange in the placenta, to evaluate the concentration of these different gases in the fetus arterial and venous blood. Three methods of the exergy analysis are implemented for both mother and fetus respiratory systems, aiming at the comparison with the respiratory system of a male adult. The destroyed exergy of the literature did not have the same trend as the models proposed in this article, taking into consideration the hemoglobin reactions. In contrast, the entropy generation associated only with the diffusion transport phenomena was one order of magnitude lower than the other methods. The placenta destroyed exergy rate is significantly higher compared to the irreversibilities of the mother’s respiratory system. One possible explanation is the fact that the placenta has other physiological functions than gas transportation.
  • Imagem de Miniatura
    Artigo 4 Citação(ões) na Scopus
    Phenomenological and Thermodynamic Model of Gas Exchanges in the Placenta during Pregnancy: A Case Study of Intoxication of Carbon Monoxide
    (2019-10-19) CENZI, JULIANA RANGEL; Cyro Albuquerque; MADY, KEUTENEDJIAN CARLOS EDUARDO
    The present work simulates the transport of oxygen, carbon dioxide, and carbon monoxide between a fetus’s circulatory system and the mother’s. The organ responsible for this exchange is the placenta. Carbon monoxide is a common air pollutant, and it impacts the physiological conditions even in low concentration. The impacts of carbon monoxide are especially dangerous for pregnant women, fetuses, and newborn babies. A model of carbon monoxide transport, from the literature, is modified to simulate a pregnant woman (original model was a male), therefore changing some parameters to express the adjusted respiratory system. It was considered the gas exchange in the placenta, to evaluate the concentration of these different gases in the fetus arterial and venous blood. Three methods of the exergy analysis are implemented for both mother and fetus respiratory systems, aiming at the comparison with the respiratory system of a male adult. The destroyed exergy of the literature did not have the same trend as the models proposed in this article, taking into consideration the hemoglobin reactions. In contrast, the entropy generation associated only with the diffusion transport phenomena was one order of magnitude lower than the other methods. The placenta destroyed exergy rate is significantly higher compared to the irreversibilities of the mother’s respiratory system. One possible explanation is the fact that the placenta has other physiological functions than gas transportation.