Repositório do Conhecimento Institucional do Centro Universitário FEI
 

Engenharia de Materiais

URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/17

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Artigo de evento 0 Citação(ões) na Scopus
    Aisi 310 stainless steel formed by gelcasting: An alternative manufacturing method
    (2020-10-05) RODRIGUES, O. L. F.; NEVEZ, M. D. M.; F. S. Ortega
    © 2020 Trans Tech Publications Ltd, Switzerland.This work evaluates the microstructure and the yield strength under compression at room temperature and at 800°C of specimens prepared with AISI 310 stainless steel powder (D50 = 10 µm), manufactured by gelcasting. Parts were vacuum sintered in a single batch at 1280°C. At room temperature, specimens presented average yield strength of 270 MPa, and at 800°C, 105 MPa. Microstructure analysis involved the measurement of grain size along the vertical axis of cylindrical specimens, with special attention to the effect of particles settling, and was conducted using scanning electron and optical microscopy, and X-ray diffraction. Settling effect was assessed considering the position where the specimen was taken and was negligible: both density and yield strength did not vary significantly along the vertical axis.
  • Imagem de Miniatura
    Artigo 0 Citação(ões) na Scopus
    AISI 310 Stainless Steel Formed by Gelcasting: An Alternative Manufacturing Method
    (2020-10-05) OLIVEIRA, LOUISE FERNANDA RODRIGUES; NEVES, MAURÍCIO DAVID MARTINS DAS; F. S. Ortega
    This work evaluates the microstructure and the yield strength under compression at room temperature and at 800°C of specimens prepared with AISI 310 stainless steel powder (D50 = 10 μm), manufactured by gelcasting. Parts were vacuum sintered in a single batch at 1280°C. At room temperature, specimens presented average yield strength of 270 MPa, and at 800°C, 105 MPa. Microstructure analysis involved the measurement of grain size along the vertical axis of cylindrical specimens, with special attention to the effect of particles settling, and was conducted using scanning electron and optical microscopy, and X-ray diffraction. Settling effect was assessed considering the position where the specimen was taken and was negligible: both density and yield strength did not vary significantly along the vertical axis.