Repositório do Conhecimento Institucional do Centro Universitário FEI
 

Engenharia de Materiais

URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/17

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Artigo de evento 1 Citação(ões) na Scopus
    Effects of dependence between solid solution and surface excess in nanoparticles
    (2010) Pereira G.J.; Gouvea D.
    In this work, samples of 10 mol% Mg-doped SnO2 were synthesized by Pechini's method and calcined at 500°C. Previous analysis suggests that the additive is preferentially located on the surface of nanoparticles as a surface excess. Since MgO is highly soluble even in weak acid medium, the samples were "washed" with concentrated nitric acid for a few hours in order to remove Mg from the surface. After the lixiviation, the sample was thermally treated again. This procedure was carried out five times using the same sample, and the dependence between macroscopic properties and surface excess was demonstrated, since it was detected a direct relationship on particle size and isoelectric point on each new washing. Also, a new method to measure surface excess in solids was applied. © (2010) Trans Tech Publications.
  • Artigo 39 Citação(ões) na Scopus
    Surface modification of SnO 2 nanoparticles containing Mg or Fe: Effects on sintering
    (2007) Castro R.H.R.; Pereira G.J.; Gouvea D.
    Controlling the surface chemistry of oxide systems has emerged an effective tool to obtain desirable nanostructures and macro properties. A relatively simple way to achieve this is by using dopants that are prone to segregate to the surfaces of the powders. In this work, we delineate the effect of Mg and Fe on SnO 2 nanopowders focusing on the surface modifications caused by surface segregation. The effects of increasing the temperature of calcinations are particularly addressed to evaluate the surface modifications at high temperatures. The powders were studied by infrared spectroscopy, zeta potential measurements, X-ray diffraction, and specific surface area measurements. Since sintering is a high-temperature process strongly dependent on surface characteristics, we drawn a relationship between the final densities after sintering and the surface chemistry of the doped powders. Doped SnO 2 pellets were sintered to over 95% of the theoretical density within a few seconds (fast firing) when significant surface modifications were observed. © 2006 Elsevier B.V. All rights reserved.