Repositório do Conhecimento Institucional do Centro Universitário FEI
 

Engenharia de Materiais

URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/17

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Artigo de evento 14 Citação(ões) na Scopus
    Investigation on the effect of a compatibilizer on the fatigue behavior of PP/coir fiber composites
    (2011) Bettini S.H.P.; Antunes M.C.; Magnabosco R.
    The mechanical behavior of polypropylene (PP) and 30 wt% coir fiber reinforced PP composites, with and without compatibilizer, were assessed through monotonic (tensile and bending) and cyclic (fatigue) tests. Fatigue load controlled tests were conducted under tension loads at a frequency of 6 Hz. The fracture mechanism was accompanied by surface fracture analyses using both optical microscopy and scanning electron microscopy. The compatibilizer used was the PP grafted with maleic anhydride. The compatibilized composites exhibited longer fatigue life times. It was also concluded that the presence of coir fibers changed the preferential fatigue mechanism, because the fracture mechanism in PP was mainly caused by heat generated by viscous effects during solicitation (thermal fatigue), whereas in the compatibilized and noncompatibilized PP/coir composites the predominant fracture mechanism was mechanical fatigue. However, thermal fatigue was also observed in the composites, especially in the noncompatibilized ones. © POLYM. ENG. SCI., 2011. Copyright © 2011 Society of Plastics Engineers.
  • Artigo 8 Citação(ões) na Scopus
    Fatigue life of coir fiber reinforced PP composites: Effect of compatibilizer and coir fiber contents
    (2013) Antunes M.C.; Moraes D.V.O.; Magnabosco R.; Bonse B.C.; Bettini S.H.P.
    The fatigue behavior of polypropylene/coir fiber composites was investigated. Composites were prepared according to an experimental statistical design, in which the independent variables coir fiber and compatibilizer content were varied. The compatibilizer used was maleic anhydride grafted polypropylene (PP-g-MA). Compatibilizer free composites were also prepared. Composites were prepared in a corotating twin-screw extruder and the mechanical behavior of polypropylene/coir fiber composites were assessed through monotonic (tensile) and cyclic (fatigue) tests. Fatigue load controlled tests were conducted under tension-tension loads at a frequency of 6 Hz. The fracture mechanism was accompanied by surface fracture analyses using scanning electron microscopy (SEM). The results indicated the need for using compatibilizer in the composites; however, increase in compatibilizer content did not affect composite fatigue lifetime. Coir content was the variable with the strongest effect on composite properties; increasing this variable caused significant increase in fatigue life. © 2013 Society of Plastics Engineers.