Repositório do Conhecimento Institucional do Centro Universitário FEI
 

Engenharia de Materiais

URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/17

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Artigo 71 Citação(ões) na Scopus
    Kinetic Study to Predict Sigma Phase Formation in Duplex Stainless Steels
    (2016) dos Santos D.C.; Magnabosco R.
    © 2016, The Minerals, Metals & Materials Society and ASM International.This work presents an improved kinetic study of sigma phase formation during isothermal aging between 973 K and 1223 K (700 °C and 950 °C), based on Kolmogorov-Johnson-Mehl-Avrami (K-J-M-A) model, established from volume fraction of sigma phase determined in backscattered electron images over polished surfaces of aged samples. The kinetic study shows a change in the main mechanism of sigma formation between 973 K and 1173 K (700 °C and 900 °C), from a nucleation-governed stage to a diffusion-controlled growth-coarsening stage, confirmed by a double inclination in K-J-M-A plots and microstructural observations. A single inclination in K-J-M-A plots was observed for the 1223 K (950 °C) aging temperature, showing that kinetic behavior in this temperature is only related to diffusion-controlled growth of sigma phase. The estimated activation energies for the nucleation of sigma phase are close to the molybdenum diffusion in ferrite, probably the controlling mechanism of sigma phase nucleation. The proposed time-temperature-transformation (TTT) diagram shows a “double c curve” configuration, probably associated to the presence of chi-phase formed between 973 K and 1073 K (700 °C and 800 °C), which acts as heterogeneous nuclei for sigma phase formation in low aging temperatures.
  • Artigo 16 Citação(ões) na Scopus
    Use of composition profiles near sigma phase for assessment of localized corrosion resistance in a duplex stainless steel
    (2019) Magnabosco R.; da Costa Morais L.; dos Santos D.C.
    © 2018 Elsevier LtdPitting corrosion potential of a UNS S31803 duplex stainless steel (DSS) heat treated between 750 °C and 850 °C at different aging times was related to the extent of the Cr- and Mo-depleted areas at sigma-ferrite and sigma-austenite interfaces, estimated using DICTRA® simulations. It is possible to describe the sigma formation kinetics using a model that assumes a spherical region of austenite, with radius equivalent to the mean intercept of austenite islands, surrounded by ferrite. Composition profiles at sigma-ferrite and sigma-austenite interfaces were calculated, allowing the evaluation of the degree of depletion in Cr and Mo at sigma interfaces. There is a reduction of pitting potential with increase of the degree of depletion, characterized as the weighted sum of depleted areas in Cr and Mo composition profiles, making possible the assessment of the localized corrosion resistance of aged DSS through simulation of sigma phase formation.