Engenharia Elétrica
URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/21
Navegar
2 resultados
Resultados da Pesquisa
Dissertação Aprendizado por reforço acelerado por heurísticas no domínio do futebol de robôs simulado(2007) Celiberto Jr., L. A.O aprendizado por reforço é uma técnica muito conhecida para a solução de problemas quando o agente precisa atuar com sucesso em um local desconhecido por meio de tentativa e erro. Porém, esta técnica não é eficiente o bastante para ser usada em aplicações com exigências do mundo real, devido ao tempo que o agente leva para aprender. Este trabalho apresenta o uso do Aprendizado por Reforço acelerado por heurísticas, no domínio da robótica móvel, utilizando para testes a plataforma do Robocup 2D simulação. Esta plataforma vem sendo usada cada dia mais no meio científico, a qual possiblita fazer inúmeros experimentos com jogadores virtuais, sem sofrer com problemas que comumente são encontrados em sistemas reais, além de manterem sempre as mesmas características de ambiente. O principal problema abordado neste trabalho é o uso da aceleração por heurísticas no Aprendizado por Reforço. Porém esta aceleração só é possível se primeiro for resolvido o problema de como desenvolver um sistema com Aprendizado por Reforço no Robocup 2D. Tal sistema apresenta diversos desafios, sendo o maior deles o tamanho do ambiente, o que gera grande dificuldade para um agente aprender uma política de decisões. Para solucionar este problema forma propostas formas de generalizar os estados, sem causar qualquer interferência no aprendizado. As experiências realizadas foram feitas sem o uso das heurísticas e depois com o uso das heurísticas. para a validação do trabalho, cada experimento foi repetido dez vezes, e seus resultados médios comparados através de uma análise estatística. Os resultados indicam algumas vantagens no uso das heurísticas, possibilitando a definição de algumas diretrizes importantes para a aplicação do uso de heurísticas no domínio do futebol de robôs simulado.Dissertação Uma arquitetura de alocação de tarefas para sistemas multi-robôs utilizando aprendizado por reforço(2011) Gurzoni Junior, José AngeloAgentes operando em domínios multiagentes precisam cooperar e coordenar suas ações, e em alguns casos, competir com adversários ao mesmo tempo. Muitos destes domínios são também dinâmicos, como o futebol de robôs, a exploração submarina, planetária ou os ambientes com presença humana, criando a necessidade de que os agentes sejam capazes de tomar decisões complexas e se adaptar rapidamente a novas condições. Na literatura existem resultados positivos à respeito da aplicação do Aprendizado por Reforço em problemas complexos, em parte porque os agentes que utilizam esta técnica aprendem por experiência, sem a necessidade de modelos do ambiente em que operam. Porém, os requisitos computacionais do Aprendizado por Reforço são ainda restritivos, especialmente em domínios que necessitam de resposta em tempo real. Por outro lado, muitos dos sistemas de alocação de tarefas em multi-robôs encontrados na literatura tem tempos de execução e custo computacional baixos, ideais para estas aplicações. Este trabalho apresenta uma arquitetura de alocação de tarefas em sistemas multi-robôs em que os agentes participam de leilões pelas funções de alto nível disponíveis e utilizam Aprendizado por Reforço para aprender o valor de cada uma destas funções, dada a situação em que a equipe de robôs se encontra. A arquitetura foi aplicada a uma equipe de futebol de robôs da categoria RoboCup Small Size. Foram comparados os desempenhos do mecanismo de alocação de tarefas quando agentes utilizavam valores de seus lances ajustados manualmente, quando os valores eram aprendidos por aprendizado por reforço e também por aprendizado por reforço com heurísticas. Os resultados dos experimentos mostram que,o sistema de alocação de tarefas proposto é capaz de aumentar significativamente o desempenho da equipe, quando comparado com algoritmos em que o comportamento da equipe é pré-programado.