Repositório do Conhecimento Institucional do Centro Universitário FEI
 

Engenharia Elétrica

URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/21

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 10 de 13
  • Imagem de Miniatura
    Dissertação
    Uma metodologia baseada em aprendizado de máquina para predição de fases de cirurgias laparoscópicas a partir de vídeos
    (2023) Henrique, Matheus Silva
    As cirurgias minimamente invasivas evoluíram consideravelmente em décadas recentes e ainda podem resultar em complicações graves ao paciente relacionadas à técnica cirúrgica. A laparoscopia é um tipo de procedimento minimamente invasivo, no qual um cirurgião, por meio de imagens geradas em tempo real, movimenta instrumentos cirúrgicos através de pequenas incisões feitas no paciente. Trata-se de um procedimento com diversas fases protocolares, mas também dependente de habilidades de cada cirurgião. O rastreamento, acompanhamento e validação dessas fases é uma estratégia importante para o processo como um todo. Técnicas de Visão Computacional baseadas em aprendizado de máquina ganharam destaque recentemente, particularmente na área médica. O projeto aqui proposto apresenta uma arquitetura baseada em Mask R-CNN, Segment Anything e Long Short-Therm Memory (LSTM), que utiliza imagens capturadas de cirurgia de colecistectomia, um tipo de cirugia laparascópica, para identificar os instrumentos durante o ato, extrair informações destes instrumentos e realizar a predição de qual fase de uma cirurgia está sendo realizada. O projeto visa trazer benefícios, como: o indexamento automático de fases em um banco de dados de cirurgia, o auxílio no estudo do tempo de fases para otimizar agendamentos, e a identificação de problemas na execução de determinadas fases. O trabalho inovador alcançou a acurácia de 81,73% na previsão de fases na base de dados M2CAI, e abre espaço para novas investigações relacionadas ao modo de execução da cirurgia por meio da segmentação e monitoramento dos instrumentos cirúrgicos. Além disso, a identificação de problemas na execução de determinadas fases poderá ser realizada, contribuindo para a melhoria dos procedimentos e, consequentemente, para melhores resultados para os pacientes
  • Imagem de Miniatura
    Dissertação
    Análise de características de navegação em redes para a detecção de intrusão com base em algoritmos bio-inspirados
    (2023) Frezzato, Miguel
    Com o constante aumento de usuários conectados à Internet, um grande volume de dados tem sido gerado a partir de várias redes. Em vista disso, a segurança cibernética está sendo cada vez mais afetada, havendo grande necessidade de estudos científicos na área. Sistemas de detecção de intrusão (IDS) cada vez mais robustos são constantemente desenvolvidos, visando proteger os dados que são trafegados nas redes. Estes sistemas analisam as características de fluxo de cada dispositivo na rede para identificar uma possível instrusão. Selecionar apenas as características que mais se relacionam com as intrusões influencia diretamente na velocidade da análise, além de auxiliar os classificadores a tomar decisões precisas ao identificar uma intrusão. Por outro lado, o desenvolvimento do aprendizado de máquina e de algoritmos de otimização inspirados na natureza têm impulsionado o avanço de diversas áreas tecnológicas. Assim, o presente trabalho apresenta uma metodologia de análise dessas características utilizando uma combinação de aprendizado de máquina e algoritmos bio-inspirados para detecção eficiente de intrusões na rede. Os resultados experimentais mostram que o método proposto aumenta a acurácia e a taxa de detecção do IDS, além de diminuir a taxa de falsos alarmes. Além disso, o método se mostrou competitivo com os principais trabalhos relacionados do estado da arte com desempenho semelhante ou superiror nas bases de dados NSL-KDD e UNSW-NB15
  • Imagem de Miniatura
    Dissertação
    Aplicação da arquitetura transformer para sumarização de artigoscientíficos
    (2023) Lima, Amanda Maciel de
    O processo de pesquisa científica tem como sua fase inicial a exploração de artigos para o conhecimento do estado da arte do tema a ser investigado. Em virtude do crescimento de dados em artigos científicos e do curso constante da informatização, tornam-se necessários mecanismos que sejam capazes de resumir artigos científicos com a finalidade de melhorar o processo de aquisição de pesquisas e direcionar a pessoa pesquisadora a acessar conteúdos relevantes. Os trabalhos de sumarização de artigos científicos, de modo geral, apresentam métodos de relevância de sentenças e aprendizado de máquina. Nos últimos anos, mecanismos de atenção associados a redes neurais e processamento de linguagem natural vêm sendo propostos para interpretare contextualizar atividades de processamento de linguagens, sendo uma delas a textual. Paralelamente, a arquitetura Transformer sugere uma modelagem de transdução com mecanismos de autoatenção - prescindindo de convoluções e recorrências - é aplicada a diversos campos da Inteligência Articial com resultados considerados promissores. Este trabalho propôs empregar o modelo pré-treinado Longformer para a atividade de sumarização de artigos científicos da base de dados SciSummNet através de etapas de pré-processamento, fine-tuning e geração dos resumos. Os resultados obtidos indicaram melhoria de 20,8% para ROUGE-2 recall e 22,69% para ROUGE-2 F-Measure em relação ao trabalho original da base SciSummNet através do modelo ComAbstract
  • Imagem de Miniatura
    Dissertação
    Redes Complexas aplicadas à otimização de portfólio de ações
    (2023) Varga, Felipe Souza
    A compreensão dos mercados financeiros é algo que desperta grande interesse nas pessoas. Eles foram estudados por diferentes áreas do conhecimento, tais como: economia, matemática e física. Apesar deste interesse, apenas recentemente que estes mercados vêm sendo estudados pela perspectiva de Redes Complexas. Assim, este trabalho modela e estuda o mercado financeiro brasileiro pela perspectiva dessas redes. O mercado brasileiro foi escolhido como objeto de estudo, pois o foco da literatura identificada é direcionado aos mercados financeiros de países desenvolvidos ou aqueles cujas economias são muito fortes no contexto internacional. As redes são construídas com base no coeficiente de correlação calculado para todos pares de Ações do mercado. Estas correlações são obtidas a partir dos retornos logarítmicos diários das Ações divididos em janelas de tempo. As redes construídas formam redes completas, entretanto, para análise de suas estruturas, é necessário filtrar as informações da rede. Com esse fim, são geradas Minimum Spanning Tree (MST) das redes. Então, é realizada a extração e o estudo das propriedades físicas destas árvores. Desta forma, será possível estudar as dinâmicas das redes de mercado financeiro ao longo do tempo. Parte desse estudo será focado em compreender a reação destas propriedades a crises financeiras. Uma vez que estas propriedades foram compreendidas, elas são utilizadas para realização da seleção de portfólios de Ações. Para isso, são selecionadas Ações com menor centralidade da rede, uma vez que são tais Ações que costumam gerar maior diversificação para o portfólio. Essa ideia corrobora com a teoria moderna de portfólio de Markowitz, na qual é descrito que a otimização de portfólios é dependente do grau de diversificação de seus ativos. Os portfólios gerados foram avaliados e comparados a portfólios de referência, tais como: Portfólio de Markowitz, Portfólio Igualmente Ponderado e Índice Ibovespa
  • Imagem de Miniatura
    Dissertação
    Predição do mercado financeiro com uma arquitetura de extração de contexto baseada em decomposição de series temporais
    (2022) Oliveira, Guilherme Albertini de
    O mercadodeaçõesdoBrasilseencontraemumagrandealta.Duranteapandemiada COVID-19,abolsabrasileirateveumcrescimentonaquantidadedepessoasfísicasde92,1% entreosanos2019e2020.Estefatosedeveadiversosfatores,dosquaisosprincipaisestão:a disseminação domercadodeaçõesviaredessociais,propagandasemcomunidadesdevídeose a baixadataxadejurosdopaísnesteperíodo.Destemodo,comaaltadenegociadoresnabolsa, a buscaporalgoritmosquereduzemorisconasoperaçõesdeativos,visandomaximizarolucro obtido nacompraevendadepapeis,tambémcresce.Muitostrabalhossugeremautilizaçãode métodosde machinelearning paraaprediçãodevaloresnabolsa.Contudo,obterresultados assertivoscomaaltavolatilidade,enão-linearidadedassériestemporaisdabolsa,aindaéum desafio. Sendoassim,estetrabalhopropõeumanovametodologiaparamodelarmatematica- mente osdadosfinanceirosdabolsadevalores,utilizandoredesneuraisrecorrentes,técnicas de decomposiçãodesériestemporais,correlaçãoentrebolsaseativosearquiteturasdeextração de contextos.Comaarquiteturapropostatambémfoipossívelfazeraprediçãodepontosde reversãodequedaparaaltaoudealtaparabaixa,dosvaloresdeumadeterminadaação.Como resultado,osmelhoresalgoritmosparaaregressãoforamosquefizeramautilizaçãoderedes Long Short-TermMemory (LSTM)e DiscreteWaveletTransform (DWT),comesemutilização de extraçãodecontextos,amboscom0.9de RootMeanSquaredError (RMSE). Porém,estes algoritmossão,emmédia,38%melhorquandotreinadosomentenabolsabrasileira.Paraaclas- sificação osmelhoresalgoritmosforamosquefizeramautilizaçãodeLSTMjuntamentecom DWT,e EchoStateNetwork (ESN) comDWT,com35%e34.6%de f1-score, respectivamente. Porfim,foipossívelobservarque,emgeral,ametodologiapropostatemmelhoresresultadosem relaçãoàsmétricasestatísticas,quandocomparadocomalgoritmostradicionaisquenãofazem o usodatécnicadeextraçãodecontextoparasériestemporais
  • Imagem de Miniatura
    Dissertação
    Sumarização abstrativa de texto por meio do modelo teórico computacional cognitivo lida
    (2022) Santos, Mariana Bastos
    Os modelos de sumarização automática de texto surgiram na metade do século XX e por muito tempo foram desenvolvidos de maneira extrativa. Os modelos extrativos de sumarização de texto utilizam partes do texto original para construir o resumo (CELIKYILMAZ et al., 2018), gerando muitas vezes problemas de coerência e coesão quando as diferentes partes são lidas juntas.Em contrapartida, na última década, a abordagem abstrativa vem sendo bastante explorada,e diferentemente da extrativa, gera novas palavras que possivelmente não se encontram no textooriginal para construir o resumo (CELIKYILMAZ et al., 2018). Essa abordagem pode corrigir oproblema de coerência e coesão, dado que se aproxima muito do modo como são construídos os resumos por humanos (SEE; LIU; MANNING, 2017). Porém, a sumarização abstrativa ainda enfrenta alguns problemas na geração do resumo, mesmo apresentando resultados satisfatórios em métricas automáticas de validação. Além disso, quando avaliados por humanos os resumos expõem problemas, como redundância, na dinâmica de leitura que ainda não é fluída. Por outro lado, há décadas são propostos modelos teóricos computacionais cognitivos que se baseiam nas teorias da psicologia e neurociência sobre a consciência, e que permitem a adaptação para diferentes aplicações, tendo ainda, como um dos modelos mais conhecidos, o LIDA (FRANKLIN et al., 2016). O presente trabalho propõe um modelo de sumarização abstrativa de texto baseado na estrutura teórica do LIDA utilizando técnicas já aplicadas para essa abordagem, tais como: Sequence-to-Sequence (Seq2Seq) (SUTSKEVER; VINYALS; LE, 2014), Word2vec (MIKOLOV et al., 2013a), Long Short-Term Memory (LSTM) (HOCHREITER; SCHMIDHUBER, 1997) e Mecanismo de Atenção (BAHDANAU; CHO; BENGIO, 2014). Os resultados mostraram a importância dos módulos do LIDA na composição do modelo proposto, reforçando a importância dos módulos: Memória Perceptiva Associativa, Codeletes de Atenção e Espaço de Trabalho Global. Além disso, o trabalho ressaltou a fragilidade da métrica ROUGE na avaliação dos resumos gerados quanto a coerência e coesão. E por fim, a técnica de redução de dimensão utilizada no word embedding, se mostrou ineficaz para a tarefa
  • Imagem de Miniatura
    Dissertação
    Metodologia para reconhecimento de objetos utilizando padrões binários locais com sensores baseados em eventos
    (2021) Fardo, Fernando Azevedo
    Recentemente, novos sensores com pixels ativos foram colocados no mercado. Estes sensores exportam variações locais de intensidade luminosa na forma de eventos assíncronos com baixa latência. Uma vez que o formato de saída dos dados é um fluxo de eventos endereçáveis e não uma imagem de intensidades completa, novos algoritmos são necessários para problemas conhecidos na área de Visão Computacional, como segmentação, VO, SLAM, reconhecimento de objetos e cenas. Algumas propostas para estes novos algoritmos foram aplicadas à navegação de veículos autônomos e mostraram bom desempenho para manobras em alta velocidade. Foram propostas também algumas metodologias para classificação de objetos utilizando métodos convencionais, adaptações para uso de redes profundas e redes neurais de terceira geração baseadas em spikes. No entanto, métodos utilizando redes profundas ou redes spike, frequentemente requerem recursos de hardware específicos e de difícil miniaturização. Além disso, diversos operadores e descritores tradicionais utilizados na área de Visão Computacional tem sido negligenciados no contexto de eventos e poderiam contribuir para metodologias mais leves para reconhecimento de objetos e símbolos. Esta tese propõe um algoritmo para extração de padrões binários locais em estruturas esparsas tipicamente encontrados em capturas por eventos com complexidade linear demonstrada experimentalmente. Para sustentar a plausibilidade da adoção deste operador, esta tese propõe a duas metodologias utilizando padrões binários locais aplicados a capturas com sensores basados em eventos para o problema de reconhecimento de objetos. A primeira metodologia, tira proveito do conhecimentos sobre os movimentos realizados pelo sensor, enquanto a segunda é agnóstica a movimentos. É demonstrado experimentalmente que o LBP é uma alternativa viável, rápida e leve e que possibilita a redução de variáveis usando algoritmo PCA em alguns casos. Demonstramos que é possível reduzir o tamanho do vetor final utilizado para classificação em até 99,73% em relação a métodos convencionais considerados estado da arte e ainda manter acurácia comparável aos mesmos.
  • Imagem de Miniatura
    Dissertação
    Silft (scale invariant lowframerate tracking)
    (2021) Braga, A. P.
    Com o aumento da urbanização, a mobilidade se torna um tema central em grandes cidades, onde as pessoas passam em média 37 dias por ano no trânsito, afetando assim, a qualidade de vida e eficiência dos negócios. Vias urbanas e rodovias estão sendo instrumentadas com câmeras, radares e lombadas eletrônicas, aumentam o controle e a segurança de todos. No entanto, as informações das instrumentações ainda são pouco utilizadas para gerar conhecimento da utilização das vias e impactar decisões futuras de investimento em infraestrutura. As imagens das câmeras utilizadas para a vigilância de vias apresentam baixa resolução, alto nível de ruído e grande variabilidade de escala de objetos, tornando as tarefas de detecção e rastreamento de objetos em tempo real desafiadores para os trabalhos publicados até o momento. Este trabalho propõe a arquitetura Scale Invariant Low Framerate Tracking (SILFT), que utiliza a fusão da metodologia de fluxo ótico denso com um modelo de detecção, ambos baseados em redes neurais, além de um novo banco de dados de imagens de rodovias Brasileiras. A SILFT obteve precisão média para detecção de 65;97 %, superando os modelos You Only Look Once (YOLO) e Faster Region based Convolutional Neural Network (FASTER R-CNN) no banco de dados proposto. Para a tarefa de rastreamento a SILFT superou em três vezes a performance do rastreador por intersecção sobre união no banco de dados proposto.
  • Imagem de Miniatura
    Dissertação
    Estudo de algoritmos de otimização inspirados na natureza aplicados ao treinamento de redes neurais artificiais
    (2021) Bouzon, M. F.
    Redes Neurais Artificiais (RNAs) são técnicas de aprendizado de máquina e inteligência artificial muito populares, propostas desde os anos 50. Entre seus maiores desafios estão o treinamento de parâmetros tais como pesos, parâmetros das funções de ativação e constantes, assim como dos seus hiper-parâmetros, como a arquitetura das redes e densidade de neurônios por camada. Entre os algoritmos mais conhecidos para a otimização paramétrica das redes estão o Adam e o Retropropagação ou Backpropagation (BP), aplicados sobretudo em arquiteturas populares como o Perceptron multicamadas ou Multilayer Perceptron (MLP), Rede Neural Recorrente ou Recurrent Neural Network (RNN), Long-Short Term Memory (LSTM), Rede neural de Base Radial ou Radial Basis Function Neural Network (RBFNN), entre muitas outras. Recentemente, o grande sucesso das redes neurais profundas, as chamadas Deep Learnings, bem como das redes totalmente conectadas, tem enfrentado problemas de tempo de treinamento e utilização de hardware especializado. Esses desafios deram novo fôlego à utilização de algoritmos de otimização para o treinamento dessas redes, e mais recentemente aos algoritmos inspirados na natureza, os chamados Inspirados na natureza ou Nature-Inspired (NI). Essa estratégia, embora não seja uma técnica tão recente, ainda não obteve grande atenção de pesquisadores, necessitando hoje de maior número de testes experimentais e avaliação, sobretudo devido ao recente aparecimento de uma gama muito maior de algoritmos NI. Alguns dos elementos que carecem de atenção, sobretudo para os NI mais recentes, estão relacionados principalmente ao tempo de convergência e estudos sobre o uso de diferentes funções custo. Assim, a presente dissertação de mestrado tem por objetivo realizar testes, comparação e estudos sobre algoritmos NI aplicados ao treinamento de redes neurais. Foram testados algoritmos NI tanto tradicionais quanto recentes, sob vários pontos de vista, incluindo o tempo de convergência e funções objetivos, elementos que receberam até o momento pouca atenção dos pesquisadores em testes prévios. Os resultados mostraram que a utilização de algoritmos NI para treinamento de RNAs tradicionais obtiveram resultados com boa classificação, similares a algoritmos populares como o Adam e o Algoritmo Backpropagation com Momento (BPMA), mas superando esses algoritmos em termos de tempo de convergência na ordem de 20 a mais de 70%, dependendo da rede e dos parâmetros envolvidos. Isso indica que a estratégia de usar algoritmos NI, sobretudo os mais recentes, para treinamento de redes neurais é um método promissor que pode impactar cada vez mais no tempo e qualidade dos resultados das aplicações recentes e futuras de aprendizado de máquina e inteligência artificial.
  • Estudo de algoritmos de otimização bio-inspirados aplica à segmentação de imagens
    (2020) Saito, N. T.
    A segmentação de imagens é uma das primeiras etapas dentro do arcabouço para processamento de cenas. Entre as principais técnicas existentes destacamos a binarização baseada em histograma, que devido a simplicidade de compreensão e baixa complexidade computacional é um dos métodos mais utilizados. No entanto, para um processo de multi-limiarização, este método torna-se computacionalmente custoso. Para minimizar este problema, são utilizados algoritmos de otimização na busca dos melhores limiares. Recentemente, vários algoritmos inspirados na natureza têm sido propostos de maneira genérica na área de otimização combinatória e obtido ótimos resultados, entre eles destacamos os mais tradicionais como o Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution Algorithm (DE), Artificial Bee Colony (ABC), Firefly Algorithm (FA) e Krill Herd (KH). Este trabalho mostra uma comparação entre alguns destes algoritmos e algoritmos mais recentes, a partir de 2014, como Grey Wolf Optimizer (GWO), Elephant Herding Optimization (EHO), Whale Optimization Algorithm (WOA), Grasshopper Optimization Algorithm (GOA) e o Harris Hawks Optmization (HHO). Este trabalho comparou os limiares obtidos por 7 algoritmos bio-inspirados em uma base composta por 100 imagens com 1 único objeto disponibilizado pela Weizmann Institute of Science (WIS). A comparação foi feita utilizando métricas consolidadas como Dice/Jaccard e PSNR, bem como o recente Hxyz. No experimento foi utilizado o Sistema extensivo como função objetivo (Método de Kapur). Ainda na proposta deste experimento, o Sistema extensivo foi comparado com a entropia não-extensiva de Tsallis, sendo que o Sistema Super-extensivo foi configurado com q ? [0.1, 0.2, . . . 0.9] e o Sistema Sub-extensivo com q ? [1.1, 1.2, . . . 1.9]. A base de imagens utilizada contém 100 imagens com 1 único objeto em cena. Os resultados mostram que o algoritmo Krill Herd (KH) foi o algoritmo vencedor em 35% das execuções segundo a métrica PSNR, 28% na métrica Dice/Jaccard e 35% na métrica Hxyz. O Sistema extensivo teve o melhor desempenho global e foi responsável pela melhor limiarização de 54 imagens segundo a métrica PSNR, 30 segundo a métrica Dice/Jaccard e 39 segundo a métrica Hxyz