Engenharia Elétrica
URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/21
Navegar
2 resultados
Resultados da Pesquisa
- Segmentação de faces parcialmente ocluídas para avaliação da expressão de dor neonatal(2024) Domingues, Pedro Henrique Silvaavaliação e o tratamento corretos da dor são procedimentos clínicos importantes para o desenvolvimento saudável de recém-nascidos (RNs). Visto que RNs ainda não desenvolveram a capacidade de expressão verbal, a identificação da dor através de expressões faciais visuais é o meio alternativo mais comum para este caso, utilizada por pais e por profissionais da saúde, para estes últimos baseados em escalas como a Neonatal Facial Coding System (NFCS). Desse modo, a automatização do uso dessas escalas utilizando imagens de face é alvo de estudos recentes. As estratégias desenvolvidas utilizam redes neurais, modelos de classificação ou a medição de distâncias entre partes da face. No entanto, alguns equipamentos médicos utilizados por estes RNs dificultam a análise automática da dor através de imagens, pois obstruem parte da face, dificultando a detecção facial e a localização de pontos chave. Diante disso, o objetivo desta dissertação foi estudar a segmentação facial de RNs, identificando o melhor método computacional para casos com e sem a presença de oclusão parcial da face e verificando a influência desta segmentação como uma ferramenta para remoção de ruído e melhora de desempenho de modelos de classificação da expressão de dor. As oclusões aqui estudadas provêm de imagens de UTIs neonatais (UTINs), nas quais equipamentos médicos como sonda enteral ou gástrica, intubação orotraqueal e óculos de fototerapia muitas vezes impossibilitam a visualização completa de partes importantes da face como olhos e boca. Três modelos de segmentação foram testados em cenários com e sem a presença dessas oclusões e o melhor foi utilizado para segmentar faces de RNs e classificação da expressão de dor com quatro diferentes classificadores baseados em redes neurais. O SAM (Segment Anything Model) foi considerado o melhor modelo para segmentação, com alto coeficiente Dice (>0,91). No entanto, utilizar o SAM para remoção de ruidos como plano de fundo e oclusões não gerou melhora significativa no desempenho dos classificadores, que apresentaram em média 66% de acurácia em casos com oclusão
- Análise e reconhecimento de dor em imagens 2D frontais de recém-nascidos e termo e saudáveis(2018) Teruel, G. F.Diversas intervenções dolorosas (ou potencialmente dolorosas) são realizadas durante a internação de um recém-nascido em uma unidade de terapia intensiva. Nessas situações, existe uma dificuldade maior em identificar a dor, devido a impossibilidade de comunicação verbal direta e objetiva como acontece usualmente entre adultos. Nas últimas décadas, várias escalas de dor têm sido propostas para identificar tal ocorrência por meio de análise da mí- mica facial do ser humano, permitindo investigar e criar métodos não-invasivos que auxiliam não somente o reconhecimento precoce da ocorrência, como também uma melhor compreensão deste fenômeno. Neste contexto, essa dissertação tem como objetivo propor e implementar uma sequência de procedimentos computacionais para detecção, interpretação e classificação de padrões em imagens bidimensionais frontais de faces para reconhecimento automático de dor em recém-nascidos. Usando transformações de dados e extrações de características estatísticas de um banco de imagens reais de recém-nascidos a termo e saudáveis, criado pelo grupo de pesquisa da UNIFESP, e também a avaliação destas mesmas imagens por profissionais da área da saúde treinados para reconhecimento de dor, foi possível identificar automaticamente os níveis de dor nessas imagens, em escala numérica contínua abstraindo a subjetividade dos profissionais de saúde treinados, quantificando o conhecimento humano na tarefa de reconhecimento de dor. Tais resultados foram também comparados com classificações das mesmas imagens, pelos mesmos profissionais, que utilizaram um método validado clinicamente e aplicado a beira do leito, denominado Sistema de Codificação Facial Neonatal (NFCS, sigla em inglês). Adicionalmente, como demais contribuições originais deste trabalho, foram geradas imagens de referência nomeadas de Atlas para cada classe "Sem Dor"e "Com Dor", as quais possuem características médias de cada grupo, e também foram geradas imagens sintéticas de faces de recém-nascidos que apresentam as mesmas características do conjunto de imagens originais do banco de imagens utilizado, expandindo a base de informação com dados de alta relevância para estudos futuros.