Repositório do Conhecimento Institucional do Centro Universitário FEI
 

Engenharia Elétrica

URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/21

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 1 de 1
  • Imagem de Miniatura
    Trabalho de Conclusão de Curso
    Aquisição de eletrocardiograma e classificação de arritmias por machine learning
    (2022-08-30) Silva, César Nogueira; Matos, Jefferson Almeida; Lopes, Fernanda Ferrezi
    Esse projeto apresenta uma proposta de um dispositivo para monitoração cardíaca pessoal. O dispositivo foi desenvolvido aplicando técnicas de Inteligência Artificial (aprendizado de máquina) para o reconhecimento de arritmias. O dispositivo informará, por meio de um e-mail, a detecção da possível arritmia à um médico ou pessoa credenciada, de modo que possa agilizar ou antecipar, um atendimento de emergência. Segundo a classificação da AAMI (Association for the Advancement of Medical Instrumentation) foram selecionadas 4 classes, sendo Normal (N), Supraventricular ectópico (SVE), Ventricular ectópico (VE) e Fusão de normal e ventriculares (F). Utilizando a base de dados MIT-BIH Arrhythmia Database e o aplicativo (app) Classification Learner do Matlab, para o treinamento, foi possível investigar vários modelos, sendo que os melhores foram o Ensemble (SubspaceKNN) e o SVM (Cubic SVM) com acurácias de 94% e 94,1%, respectivamente. Esses modelos foram selecionados para a etapa de teste, tendo o modelo Ensemble (SubspaceKNN) obtido a melhor acurácia (74,4%) e posteriormente sendo utilizado para a implementação no aplicativo de interface do usuário. Desta forma, sua implantação contribui para o desenvolvimento de inovação científicotecnológica, à medida que o equipamento apresenta características que ainda não foram totalmente implementadas no mercado e causa impacto no âmbito social, tornando-o acessível, sem a necessidade de um serviço de monitoração contínuo contratado pelo paciente.