Engenharia Elétrica
URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/21
Navegar
1 resultados
Resultados da Pesquisa
Tese Um agrupamento de modelos conexonistas por meio de sinapses artificiais e suas aplicações no mercado de criptomoedas(2020) Vilão Júnior, C. O.Este trabalho propõe um algoritimo, chamado de CMEAS, tem inspiração biológica focada na forma que o crescimento de axônios neuronais atinge seu destino sináptico em outras redes de neurônios. Esse crescimento segue caminhos específicos no cérebro de animais, definidos por determinadas proteínas. O CMEAS foi desenvolvido para agrupar duas redes neurais convolucionais, treinadas a priori em dois tópicos que influenciam simultâneamente o mercado de criptomoedas, como o tópico de notícias e de cotações. O meio pelo qual as redes são agrupadas, ocorre usandose conexões externas às redes originais, para se conectar aos neurônios internos de cada rede. Duas vertentes foram propostas para o treinamento do CMEAS, sendo um com aprendizado supervisionado e outro com aprendizado por reforço. Os resultados comprovados pelos testes de Wilcoxon, demonstram que o CMEAS teve melhor fator de lucro e índice sharpe superior nos experimentos em relação aos algoritimos de agrupamento clássico por meio de votação e redes profundas usadas de forma individual, o algoritimo, também, foi superior em todas as métricas da estratégia compra e retêm (buy and hold), além disso, o algoritimo obteve resultados próximos, porém, melhores que os da CNN-LSTM considerada estado da arte, dadas as métricas utilizadas