Engenharia Elétrica
URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/21
Navegar
2 resultados
Resultados da Pesquisa
- Junctionless nanowire transistors operation at temperatures down to 4.2 K(2016) Trevisoli R.; De Souza M.; Doria R.T.; Kilchtyska V.; Flandre D.; Pavanello M.A.© 2016 IOP Publishing Ltd.The aim of this work is to analyze the operation of junctionless nanowire transistors down to the liquid helium temperature. The drain current, the transconductance, the output conductance, the subthreshold slope, the threshold voltage and the interface trap density are the key parameters under analysis, which has been performed through experimental results together with simulated data. Oscillations in the transconductance and output conductance have been observed in the experimental results of junctionless devices for temperatures lower than 77 K. The experimental drain current curves also exhibited a 'drain threshold voltage' for the lower temperatures. The impact of the source/drain contact resistance and discrete trap levels has been analyzed by means of simulations.
- Trapezoidal SOI FinFET analog parameters' dependence on cross-section shape(2009) Buhler R.T.; Giacomini R.; Pavanello M.A.; Martino J.A.The trapezium is often a better approximation for the FinFET cross-section shape, rather than the design-intended rectangle. The frequent width variations along the vertical direction, caused by the etching process that is used for fin definition, may imply in inclined sidewalls and the inclination angles can vary in a significant range. These geometric variations may cause some important changes in the device electrical characteristics. This work analyzes the influence of the FinFET sidewall inclination angle on some relevant parameters for analog design, such as threshold voltage, output conductance, transconductance, intrinsic voltage gain (AV), gate capacitance and unit-gain frequency, through 3D numeric simulation. The intrinsic gain is affected by alterations in transconductance and output conductance. The results show that both parameters depend on the shape, but in different ways. Transconductance depends mainly on the sidewall inclination angle and the fixed average fin width, whereas the output conductance depends mainly on the average fin width and is weakly dependent on the sidewall inclination angle. The simulation results also show that higher voltage gains are obtained for smaller average fin widths with inclination angles that correspond to inverted trapeziums, i.e. for shapes where the channel width is larger at the top than at the transistor base because of the higher attained transconductance. When the channel top is thinner than the base, the transconductance degradation affects the intrinsic voltage gain. The total gate capacitances also present behavior dependent on the sidewall angle, with higher values for inverted trapezium shapes and, as a consequence, lower unit-gain frequencies. © 2009 IOP Publishing Ltd.