Engenharia Elétrica
URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/21
Navegar
5 resultados
Resultados da Pesquisa
- Sistema de posicionamento de robôs em partidas de futebol baseado em inteligência coletiva por enxame(2020) Laureano, Marcos Aurelio PchekA equipe Small Size League (SSL) da RoboFEI existe desde 2008. Uma das motivações para a existência do projeto é aplicação dos conhecimentos em eletrônica, mecânica e programação no uso e desenvolvimento de algoritmos voltados para a Inteligência Artificial (IA). A IA abrange várias técnicas, como aprendizado, otimização e algoritmos bioinspirados. Algoritmos bioinspirados são utilizados para os mais diversos propósitos, inclusive para que robôs possam trabalhar de forma colaborativa. A liga SSL evoluiu com o passar dos anos e algumas mudanças já foram realizadas como o aumento das dimensões do campo e quantidade de robôs. Essa evolução também traz maiores possibilidades de jogadas e aumento da complexidade de uma partida. O posicionamento dos robôs em campo torna-se importante como mecanismo de defesa e ataque. Neste cenário, no trabalho aqui relatrado é proposto a utilização do algoritmo Particle Swarm Optimization (Otimização de Enxame de Partículas) (PSO) como uma opção de inteligência coletiva aplicada para determinar o posicionamento dos robôs em partidas de futebol. São propostas novas funções de aptidão para defesa do gol e bloqueio de passes na liga SSL. Para o desenvolvimento dessas funções, princípios táticos de jogos do futebol moderno foram verificados. Para avaliar a efetividade das funções de otimização, são propostas novas métricas para mensurar o Índice de Performance do Posicionamento (IPOS) dos posicionamentos originais e otimizados. Essas métricas estão baseadas no Sistema de Avaliação Tática no Futebol (FUT–SAT) que define o Índice de Performance Tática (IPT) de uma equipe baseado em determinados critérios e posicionamentos em campo. Para avaliação da efetividade das funções de aptidão, foram selecionadas jogadas com gols efetivos da RoboCup 2019 – Liga A. Essas jogadas foram separadas do início do toque da bola até a finalização em gol em intervalos de 200 milissegundos e nomeadas de instantes. Para cada instante o posicionamento da defesa é otimizado. Ao final são aplicadas as métricas de avaliação do novo posicionamento e comparadas com as originais. A aplicação das métricas de avaliação e inspeção visual demonstram que os posicionamentos sugeridos poderiam ter impedido a continuidade da jogada em vários momentos antes da finalização ao gol. Os experimentos demonstraram a efetividade da otimização e das métricas. Finalmente, as funções de aptidão e métricas podem ser aplicadas em outras categorias de futebol de robôs
- Avaliação de movimentos na patinação artística com identificação e interpretação de resultados automáticas(2019) Bittar, L. M. V. R.A patinação artística é um esporte que apresenta forte combinação de elementos técnicos e artísticos. Seu sistema de avaliação envolve critérios objetivos, como o julgamento da execução de elementos técnicos, e subjetivos, como interpretação, composição e performance. O objetivo deste trabalho é apresentar uma proposta para identificação e avaliação automática de performances da patinação artística, inicialmente baseada nos critérios objetivos de julgamento do domínio, realizada por modelos artificiais. São utilizadas diversas técnicas de visão computacional, redes neurais artificiais e algoritmos classificadores para aprendizado supervisionado de máquina. Imagens são obtidas através de vídeos de competições oficiais de patinação artística, de forma a descrever em quadros a execução completa de elementos técnicos apresentados; a técnica de segmentação de imagens graph-cut interativo é aplicada nos quadros obtidos, de forma a separar o atleta do plano de fundo; imagens quadro-a-quadro são montadas para a criação de um conjunto de dados composto por 90 imagens com execução quadro-a-quadro de dois diferentes elementos técnicos (Triple Axel e Quad Toe); redes neurais profundas pré-treinadas (ResNet e Xception) são utilizadas para a extração de atributos de alto e baixo nível das imagens; por fim, modelos classificadores são treinados de forma supervisionada com os atributos previamente extraídos, possibilitando a identificação do elemento técnico apresentado e a avaliação obtida (pontuação acima ou abaixo do valor base do elemento). Através da combinação dessas técnicas e da avaliação de diferentes abordagens do problema, os modelos avaliados se mostraram capazes de identificar o elemento sendo realizado e avaliar a qualidade de execução dos elementos em relação aos seus valores base. Esta proposta visa contribuir para a ainda pouco explorada área de avaliação da qualidade de ações, atuando também como base e incentivo para desenvolvimento de futuros trabalhos que visem a aplicação de tecnologia para assistência de atletas, técnicos e jurados do esporte
Dissertação Correspondência entre regiões de imagens por meio do algoritmo iterative closet point (ICP)(2015) Guimarães, A. A. R.Na literatura atual sobre correspondência de pontos podem-se destacar três algoritmos principais: ASIFT, SIFT e SURF, que procuram pontos correspondentes entre imagens através de descritores locais, fazendo a correspondência de pontos entre imagens semelhantes em várias cenas. No entanto, quando a correspondência entre a imagem de referência e a imagem a ser correspondida possui uma variação de latitude e longitude expressiva, esses algoritmos perdem em precisão e revocação. Diante disso, esta dissertação apresenta um algoritmo capaz de realizar a correspondência entre regiões das imagens, onde tem-se variações de latitude e longitude expressivas, em diferentes cenas e pontos de vista. O algoritmo desenvolvido neste trabalho foi chamado de Método de Correspondência utilizando o ICP (MCICP). Para a produção das regiões relevantes da imagem, foi utilizado um algoritmo de segmentação em grafo, que produz regiões que se aproximam dos objetos em estudo. Para a correspondência das regiões produzidas, utilizou-se o algoritmo Iterative Closest Point (ICP) como comparador dessas regiões, produzindo assim, a correspondência entre imagens. Foram criados três cenários para testes, no primeiro cenário utilizamos somente objetos volumétricos, no segundo cenário somente objetos planos e no terceiro uma combinação entre eles. O sensor Kinect foi utilizado para a obtenção do mapa de profundidade de cada imagem. Os resultados obtidos comprovam que o nosso modelo conseguiu fazer a correspondência entre regiões. Nesta dissertação, comprovou-se que o ICP pode ser utilizado na correspondência de regiões, em que a métrica de comparação é o erro produzido pelas nuvens.Dissertação Algoritmos de segmentação de imagens de tomografia computadorizada da artéria carótida(2012) Gallão, Celso DenisEste trabalho apresenta estudos de algoritmos de segmentação de imagens baseados na entropia extensiva de Shannon, na entropia não extensiva de Tsallis, e em uma variação da entropia de Shannon com ponderações distintas entre background e foreground, aqui apresentada pela primeira vez como entropia de Shannon Ponderada. Outras metodologias de segmentação de imagens são aqui revistas apenas por conhecimento histórico, como a entropia relativa de Kullback-Leibler, limiarização tradicional e limiarização iterativa. Para a realização de testes comparativos entre os três modelos entrópicos estudados, são aplicados dados sintéticos gerados por funções Gaussianas, representando o background e o foreground de imagens. Esses dados são utilizados para o cálculo do limiar ótimo analítico segundo variações controladas da média, do desvio-padrão e da amplitude das funções Gaussianas. Esses limiares ótimos analíticos foram comparados com os limiares calculados por meio das entropias de Shannon, de Tsallis e de Shannon Ponderada. Os resultados mostram que as entropias de Tsallis e de Shannon Ponderada foram capazes de produzir limiares iguais aos limiares ótimos analíticos encontrados pelos dados sintéticos, em todos os casos analisados. Também são aplicadas as mesmas três técnicas entrópicas em imagens medicas reais das artérias carótidas, capturadas por tomografia computadorizada. As segmentações resultantes da aplicação dos três m´métodos entrópicos são, então, comparados com as segmentações manuais feitas por especialistas, para análise e discussão da precisão na medição da espessura das paredes (IMT) e da vazão do fluxo sanguíneo (lúmen) das artérias carótidas, e os resultados são apresentados.- Segmentação de imagens coloridas utilizando algoritmos bioinspirados(2017) Conforto, Victor HenriqueSegmentação de imagens é uma das áreas mais antigas de visão computacional, com muitos problemas bem definidos e várias soluções propostas bem aceitas. No entanto ainda há muito trabalho a ser feito, sobretudo em segmentação de imagens coloridas, devido à demanda por mais aplicações. Recentemente, duas novas tecnologias têm se destacado na área. O estudo de análise de imagens sob o ponto de vista da estatística não-extensiva e a utilização de algoritmos bio-inspirados para lidar com problemas que demandam multi-limiarização, geralmente computacionalmente inviáveis quando o espaço de busca é histogrâmico. Assim, a proposta desta dissertação é o estudo de um novo método baseado em enxame de partículas, recentemente proposto na literatura e chamado de Firefly, juntamente com Kernel entrópico não extensivo para a multilimiarização de imagens espectrais. Os resultados obtidos mostram que o metodo proposto utilizando o algoritmo firefly segmentando a imagem baseado apenas na dimensão H de HSV obteve o melhor resultado dentre os experimentos realizados. Este trabalho aborda ainda a comparação entre o uso de diferentes espaços de cores, parâmetros e filtros para a segmentação de imagens coloridas.