Engenharia Elétrica
URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/21
Navegar
4 resultados
Resultados da Pesquisa
- Evapotranspiração de referência usando o IoT e algoritmos de aprendizagem de máquina(2021) Faria, B. T.A Organização das Nações Unidas para Alimentação e Agricultura (FAO) estima um crescimento populacional que chega a 11.2 bilhões até ano de 2100, o que sem dúvida contribuirá para o crescimento da demanda por produtos agrícolas alimentares e não alimentares, tornando a otimização de recursos hídricos indispensável. Neste contexto, o parâmetro de evapotranspiração de referência determinado pelo método FAOPM destaca-se. Contudo, uma medida precisa necessita de diversos parâmetros climáticos, que podem não estar disponíveis em algumas regiões rurais, neste sentido, uma solução promissora são abordagens que se utilizam da menor quantidade de parâmetros climáticos, que podem ser medidos por satélites e estações meteorológicas da região e modelos de aprendizagem de máquina. Nesta pesquisa os modelos MLP (Multlayer perceptron) e SVM (Support Vector Machines) foram utilizados para modelar a evapotranspiração de referência a partir de dados de satélites e estações meteorológicas sob duas abordagens: a abordagem local, onde os modelos foram treinados e testados em um local de treinamento, e a abordagem regional, onde os modelos treinados no local de treinamento foram aplicados em um local de teste, em dois experimentos: um em uma região de clima temperado e outra em uma região de clima tropical. Os resultados indicam que o modelo MLP se sobressaiu diante ao modelo SVM em todos as simulações realizadas, no qual os modelos treinados com os parâmetros relativos a temperatura e radiação obtiveram as métricas R2 de 0.6568, RMSE de 0.1103 e MAE de 0.0882 para o experimento da região de clima temperado e métricas R2 de 0.7391, RMSE 0.1266 e MAE de 0.1063 para a região de clima tropical na abordagem local, o que demonstra o potencial de uso de apenas estes parâmetros para a modelagem da evapotranspiração de referência. Já na abordagem regional o modelo MLP pode ser aplicado com exito, o qual obteve as métricas R2 de 0.7158, RMSE de 0.1592, e MAE de 0.1428, contudo, no experimento de clima temperado, os resultados da aplicação foram insatisfatórios, demonstrando que para as condições daquele local os modelos não puderam ser aplicados.
- Avaliação de movimentos na patinação artística com identificação e interpretação de resultados automáticas(2019) Bittar, L. M. V. R.A patinação artística é um esporte que apresenta forte combinação de elementos técnicos e artísticos. Seu sistema de avaliação envolve critérios objetivos, como o julgamento da execução de elementos técnicos, e subjetivos, como interpretação, composição e performance. O objetivo deste trabalho é apresentar uma proposta para identificação e avaliação automática de performances da patinação artística, inicialmente baseada nos critérios objetivos de julgamento do domínio, realizada por modelos artificiais. São utilizadas diversas técnicas de visão computacional, redes neurais artificiais e algoritmos classificadores para aprendizado supervisionado de máquina. Imagens são obtidas através de vídeos de competições oficiais de patinação artística, de forma a descrever em quadros a execução completa de elementos técnicos apresentados; a técnica de segmentação de imagens graph-cut interativo é aplicada nos quadros obtidos, de forma a separar o atleta do plano de fundo; imagens quadro-a-quadro são montadas para a criação de um conjunto de dados composto por 90 imagens com execução quadro-a-quadro de dois diferentes elementos técnicos (Triple Axel e Quad Toe); redes neurais profundas pré-treinadas (ResNet e Xception) são utilizadas para a extração de atributos de alto e baixo nível das imagens; por fim, modelos classificadores são treinados de forma supervisionada com os atributos previamente extraídos, possibilitando a identificação do elemento técnico apresentado e a avaliação obtida (pontuação acima ou abaixo do valor base do elemento). Através da combinação dessas técnicas e da avaliação de diferentes abordagens do problema, os modelos avaliados se mostraram capazes de identificar o elemento sendo realizado e avaliar a qualidade de execução dos elementos em relação aos seus valores base. Esta proposta visa contribuir para a ainda pouco explorada área de avaliação da qualidade de ações, atuando também como base e incentivo para desenvolvimento de futuros trabalhos que visem a aplicação de tecnologia para assistência de atletas, técnicos e jurados do esporte
Dissertação - Interface cérebro-computador para classificação de banco de imagens de acervos museológicos(2018) Bechelli, R. P.