Engenharia Elétrica
URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/21
Navegar
17 resultados
Resultados da Pesquisa
Tese Reconhecimento automatizado da dor por movimentos faciais de recém-nascidos internados em unidade de terapia intensiva neonatal(2024) Heiderich, Tatiany MarcondesRecém-nascidos internados em Unidades de Terapia Intensiva Neonatal (UTIN) frequentemente passam por procedimentos que causam dor. A presença de dispositivos médicos fixados à face do neonato dificulta a avaliação adequada da dor. Este estudo teve como objetivo desenvolver um método automatizado para reconhecer a dor em neonatos, mesmo em condições de visibilidade facial limitada. Foi proposto e implementado um arcabouço computacional utilizando técnicas atuais de processamento de imagens e de Inteligência Artificial para segmentar regiões faciais específicas e para classificar movimentos faciais indicativos de dor, sendo estes: boca aberta, boca estirada, sulco nasolabial aprofundado, fronte saliente e fenda palpebral estreitada. Com o uso de quatro bases de dados distintas e de referência na literatura afim, o método foi treinado, validado e testado, permitindo a análise apenas das áreas visíveis da face. Uma abordagem inovadora foi aplicada, atribuindo pesos diferenciados aos movimentos faciais mais relevantes, com maior pontuação para os movimentos de maior poder discriminatório, como o sulco nasolabial aprofundado. O método proposto demonstrou ser eficiente e confiável, apresentando na validação um F1 score de 83%, valor-p de McNemar de 0,146, e Kappa de Cohen de 0,668, resultados compatíveis e, em alguns aspectos, superiores aos métodos tradicionais, especialmente em condições de visibilidade parcial da face do neonato. Esta pesquisa não pretende substituir os métodos tradicionais, mas sim otimizá-los, oferecendo uma solução prática e robusta para os desafios do diagnóstico de dor em neonatos na UTIN. A combinação de análise segmentada da face, avaliação apenas das regiões visíveis e pontuações diferenciadas para movimentos faciais mais discriminantes posiciona este arcabouço como uma contribuição significativa e viável para a evolução do manejo da dor neonatal, promovendo uma avaliação mais objetiva e precisa em cenários clínicos complexosDissertação Aprimorando a eficiência contratual de energia: um estudo de previsão de demanda com aprendizado de máquina(2024) Pessoa, Patrick de SousaEste projeto de pesquisa aborda a otimização contratual da demanda de energia como um elemento fundamental para aprimorar a eficiência energética da rede elétrica e reduzir custos para consumidores industriais, evitando multas associadas à demanda excessiva estabelecida em contrato. A diferença entre a demanda contratada e a efetiva é frequentemente subestimada, resultando em desperdício de recursos e penalidades financeiras. Foram estudados modelos de inteligência artificial, como FA (Floresta Aleatória), SVR (Support Vector Regression) e rede LSTM (Long-short Term Memory), para prever a demanda em diferentes horizontes temporais. A análise temporal indicou que a acurácia aumenta à medida que o horizonte de tempo é reduzido, destacando a importância da escolha do modelo e do intervalo de tempo na previsão da demanda. Um estudo de caso foi conduzido para avaliar a precisão da previsão em comparação com formas tradicionais de estabelecimento de contratos de demanda, ressaltando a importância do tamanho da base de dados disponível para o desempenho do modelo. A fim de comparação com a rede LSTM, estudou-se o desempenho para a rede GRU (Gated Recurrent Unit Network), a qual obteve resultados comparáveis à LSTM, porém com treinamento mais rápido. Deste modo, este projeto contribui para a otimização contratual da demanda de energia, permitindo que empresas otimizem estes modelos de contratos, minimizem multas e aliviem a carga na rede elétrica, sendo que os resultados confirmam a importância do aprendizado de máquina na otimização de contratos de demanda de energia- Cubo analisador paraconsistente com filtro de evidências e análise temporal(2023) Côrtes, Hyghor, MirandaInformações incertas e inconsistentes estão frequentemente presentes na entrada de qualquer sistema do mundo real que dependa de várias fontes de dados. Informações de grandezas físicas obtidas de rede de sensores, e sua interpretação por agentes artificiais inteligentes, em sistemas de engenharia, estão sujeitas à existência de inconsistências. Isso ocorre pois raciocinar com informações inconsistentes é impossível na lógica clássica, lógica intuicionista ou sistemas similares que respeitam o princípio da explosão e a lei da não-contradição. Uma família de lógicas não clássicas, chamadas de Lógicas Paraconsistentes, formaliza a ideia de que mesmo a partir de premissas inconsistentes, conclusões úteis podem ser tiradas. Neste contexto, a Lógica Paraconsistente com Anotação de Dois Valores (LPA2v), que utiliza um par de evidências favorável e desfavorável como anotações, tem sido particularmente bem-sucedida em aplicações de engenharia (por meio de implementação de algoritmos em sistemas informatizados). Estruturas chamadas Para-Analisadores podem ser construídas com essa lógica que fornece meios adequados para analisar o valor de verdade de uma proposição P sob evidências conflitantes/contraditórias. O trabalho relatado nesta tese estende os Para-Analisadores tradicionais com um filtro de evidências. Este novo modelo pode ser representado como uma estrutura de cubo representando vários reticulados de Para-Analisadores atribuídos à qualidade da evidência, que é atualizada de acordo com as medições realizadas em tempo de execução. A estrutura de análise paraconsistente tridimensional assim definida é chamada Cubo Analisador Paraconsistente com Filtro de Evidências e Análise Temporal (CAPet). Neste trabalho, ainda, conjuntos de CAPet são interligados formando Redes de Cubos Analisadores Paraconsistentes com Filtro de Evidências e Análise Temporal (chamadas de CAPetNETs), com o intuito de resolver problemas práticos complexos de engenharia. Para demonstração de resultados, como exemplo prático de engenharia de aplicação de CAPetNETs, nesta tese foi utilizado um problema de classificação de condições de operação de equipamentos em redes de dados de controle e supervisão de sistema elétrico. Neste contexto, distintas topologias de CAPetNETs foram definidas com o objetivo de identificar diversos tipos de falhas em equipamentos de rede de dados. A consolidação da inferência das CAPetNETs para cada equipamento permitiu uma identificação precisa da condição de operação dos equipamentos. Resultados em sistemas simulados mostram que as redes de CAPets são eficazes para lidar com inconsistências sem banalizar as inferências, além de fornecer uma decisão mais informada (mais fina) sobre classificação de condições de operação de equipamentos da rede de dados do exemplo prático, quando comparado com um Para-Analisador tradicional que não leva em consideração o filtro de evidências
- Uso da transferência de aprendizado na análise de dados de efeitos destrutivos de ions pesados (SEB)(2023) Santos, Júlia TauaneEste trabalho, aborda a contribuição metodológica do uso da técnica de transferência de aprendizado aplicada a um modelo de rede neural previamente utilizado, a fim de classificar íons sob efeitos radioativos em transistores. A transferência de aprendizado consiste na utilização de um aprendizado de máquina aplicado anteriormente em determinada situação ou problema, transferindo o conhecimento para uma nova classificação de um assunto correlacionado, porém distinto. A sua utilização viabiliza uma maior capacidade de processamento no aprendizado da rede neural e mais rapidez, que se tornam aliados no desenvolvimento de modelos de segmentação de redes neurais convolucionais. O foco desta pesquisa está na utilização do treinamento de uma rede neural para a classificação de efeito de eventos únicos (SEE) com um transistor 3N163, sendo transferido esse aprendizado obtido anteriormente para uma nova classificação dados de efeitos destrutivos de íons pesados (SEB), subclasse do SEE, com um transistor IRLZ34NPbF, portanto, componentes com características físicas diferentes e efeitos correlacionados, porém distintos. A utilização da técnica de transferência de aprendizado no treinamento da rede neural artificial resultou em uma redução aproximada de 67% no tempo de processamento, quando comparada à rede neural DeepConvLSTM treinada sem a transferência de conhecimento prévio. Essa redução no tempo de processamento demonstra a eficiência e o benefício da transferência de aprendizado na aceleração do treinamento do modelo. Além disso, o modelo treinado com a técnica de transferência de aprendizado alcançou uma precisão de 99,07% nos dados treinados ao longo de 100 épocas. Essa alta precisão sugere que o modelo foi capaz de fazer previsões corretas na maioria das instâncias durante o treinamento, evidenciando a capacidade da transferência de aprendizado em melhorar o desempenho e a acurácia do modelo
- Human vs machine towards neonatal pain assessment: a comparison of the facial features extracted by adults and convolutional neural networks(2023) Carlini, Lucas CarliniOne of the most important challenges of the scientific community is to mitigate the several consequences for neonates due to pain exposure. This challenge is mainly justified by the fact that neonates are not able to verbally communicate pain, hindering the correct identification of the presence and intensity of this phenomenon. In this context, several clinical scales have been proposed to assess pain, using, among other parameters, the facial features of the neonate. However, a better comprehension of these features is yet required, since some recent results have shown the subjectivity of these scales. Meanwhile, computational frameworks have been implemented to automate neonatal pain assessment. Despite their impressive performances, these frameworks still lack to understand the corresponding decision-making processes. Therefore, we propose to investigate in this dissertation the facial features related to the human and machine neonatal pain assessments, comparing the visual perceived regions by health-professionals experts and parents of neonates with the most relevant ones extracted by eXplainable Artificial Intelligence (XAI) methods using two classification models: (i) VGG-Face, trained originally in facial recognition, and (ii) N-CNN, implemented and trained end-to-end for neonatal pain assessment. Our findings show that the regions used by the classification models are clinically relevant to neonatal pain assessment, yet do not agree with the facial perception of healthprofessionals and parents. Consequently, these differences suggest that humans and machines can learn with each other in order to improve their current decision-making process of identifying the discriminant information related to neonatal pain. Additionally, we observed that, using the same classification model, the XAI methods implemented here yield distinct relevant facial features to the same input image. These results raise concerns about the effective use and interpretation of XAI methods, and, more importantly, what regions of the image are truly relevant to the decision-making process of the classification model. Nevertheless, our findings advance the current knowledge on how humans and machines code and decode the neonatal facial response to pain. We believe that these findings might enable further improvements in clinical scales and computation tools widely used in real situations, whether based on human or machine decision-making process
- Reconhecimento de objetos baseado em uma arquitetura neuro-cognitiva(2020) Lopes, L. A.Nas últimas três décadas, o desenvolvimento de modelos que objetivam desenvolver máquinas inteligentes tem ganho mais atenção dos pesquisadores, avançando rápidamente. Na área da Inteligência Artificial é possível identificar duas abordagens distintas. Na primeira, pesquisadores de diferentes áreas dedicam-se a desenvolver modelos cognitivos baseados em mente humana, formalizando descobertas em áreas como psicologia e neurociência, como o caso da arquitetura LIDA, que é talvez o exemplo mais conhecido desse tipo de iniciativa. Na segunda, buscam puramente resolver problemas a partir de modelos autônomos, não preocupando-se com toda a complexidade da mente humana, como no caso do YOLO, um avançado algoritmo para reconhecimento de objetos. Neste trabalho, é proposta uma abordagem utilizando-se arquiteturas cognitivas apoiadas na estrutura de modelos cognitivos já estabelecidos, em busca de uma melhora em seus resultados ao adicionar uma dinâmica que simula a mente humana. Na proposta deste trabalho, o YOLO compõe o módulo de Memória Perceptiva Associativa visando realizar o reconhecimento de objetos, tendo agregado um módulo de Memória Episódica Transiente. Este último será responsável por adicionar uma memória recente à estrutura proposta, que combinada com codelets de atenção, permite que o rastreamento de objetos ajude na decisão de quando a memória perceptiva associativa deve ser acionada, utilizando diferentes algoritmos para tais tarefas. Experimentos foram realizados sobre a base de imagens TV77, base esta que aglomera videos de diferentes Datasets conhecidas na academia. Assim, o desempenho na tarefa de reconhecer objetos foi medido e comparado com a sua implementação original, obtendo um desempenho mais rápido no processamento, sem perder de forma significativa a assertividade original do modelo
Dissertação Domótica inteligente: automação residencial baseada em comportamento(2007) Sgarbi, Julio AndréA automação reseidencial evoluiu muito nos últimos anos, entretanto pouco destaque é dado à automação residencial baseada no comportamento dos habitantes. O sistema proposto ABC+ (Automação Baseada em Comportamento) foi desenvolvido par observar e aprender regras em uma casa de acordo com o comportamento de seu habitante, utilizando o conceito de aprendizado com regras de indução. O principal problema abordado neste trabalho foi desenvolver um sistema simples e amigável que abrange as várias particularidades envolvidas na automação inteligente de uma residência, tais como as seqüências causais de eventos, que geram regras indesejáveis; a inserção de novas regras para os habitantes, sem causar desconforto aos mesmos; os diferentes perfis de habitantes e ambioentes, entre outros. As experiências forma feitas através de dois simuladores desenvolvidos para se comprovar primeiramente o correto funcionamento do sistema proposto e posteriormente observar o comportamento dos sitema e suas variáveis quando à ação de um agente (habitante)Dissertação Dissertação Aprendizado por reforço aplicado ao desenvolvimento de agentes humanoides no domínio do futebol de robôs simulado(2014) Berton, Priscila AngelaA área da robótica vem evoluindo ao longo destes anos com a criação de novos robôs e com o desenvolvimento de aplicações inteligentes. A criação de robôs cada vez mais semelhantes aos seres humanos é um grande desafio. Para vencer este desafio, existem técnicas de aprendizado de máquina que têm semelhanças ao aprendizado de um ser humano. O domínio estudado neste trabalho é o futebol de robôs humanoides, que é um grande desafio, já que o robô deve se movimentar e ter comportamentos semelhantes a jogadores reais com o uso de técnicas de aprendizado. A técnica de aprendizado estudada neste trabalho é o Aprendizado por Reforço, utilizada para a solução de problemas quando um agente robô humanoide precisa aprender a atuar em um local desconhecido. Esta técnica é capaz de fazer os agentes robôs humanoides a aprender, por meio de tentativa e erro, para qual lado ele deverá andar, fazer gols como também fazer a defesa destes, melhorando o seu comportamento a cada instante,em um programa de simulação virtual de futebol, chamado RoboCup 3D. A plataforma, RoboCup 3D, utilizada para desenvolvimento dos agentes robóticos, vem sendo cada vez mais utilizada no mundo científico, devido simular em um mundo virtual características de jogadores de um mundo real, além de manter as mesmas características do ambiente.