Repositório do Conhecimento Institucional do Centro Universitário FEI
 

Engenharia de Robôs

URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/339

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 3 de 3
  • Artigo de evento 2 Citação(ões) na Scopus
    Heuristically-accelerated reinforcement learning: A comparative analysis of performance
    (2014) MARTINS, M. F.; Reinaldo Bianchi
    This paper presents a comparative analysis of three Reinforcement Learning algorithms (Q-learning, Q(λ)-learning and QS-learning) and their heuristically-accelerated variants (HAQL, HAQ(λ) and HAQS) where heuristics bias action selection, thus speeding up the learning. The experiments were performed in a simulated robot soccer environment which reproduces the conditions of a real competition league environment. The results clearly demonstrate that the use of heuristics substantially improves the performance of the learning algorithms. © 2014 Springer-Verlag.
  • Artigo de evento 2 Citação(ões) na Scopus
    Humanoid robot gait on sloping floors using reinforcement learning
    (2016-01-05) SILVA, I. J.; PERICO, D. H.; HOMEM, T. P. D.; VILAO, C. O.; Reinaldo Bianchi; Flavio Tonidandel
    © Springer International Publishing AG 2016.Climbing ramps is an important ability for humanoid robots: ramps exist everywhere in the world, such as in accessibility ramps and building entrances. This works proposes the use of Reinforcement Learning to learn the action policy that will make a robot walk in an upright position, in a lightly sloped terrain. The proposed architecture of our system is a two-layer combination of the traditional gait generation control loop with a reinforcement learning component. This allows the use of an accelerometer to generate a correction for the gait, when the slope of the floor where the robot is walking changes. Experiments performed on a real robot showed that the proposed architecture is a good solution for the stability problem.
  • Imagem de Miniatura
    Artigo 37 Citação(ões) na Scopus
    Qualitative case-based reasoning and learning
    (2020-03-20) HOMEM, THIAGO PEDRO DONADON; Paulo Santos; COSTA, ANNA HELENA REALI; Reinaldo Bianchi; MANTARAS, RAMON LOPEZ DE
    The development of autonomous agents that perform tasks with the same dexterity as performed by humans is one of the challenges of artificial intelligence and robotics. This motivates the research on intelligent agents, since the agent must choose the best action in a dynamic environment in order to maximise the final score. In this context, the present paper introduces a novel algorithm for Qualitative Case-Based Reasoning and Learning (QCBRL), which is a case-based reasoning system that uses qualitative spatial representations to retrieve and reuse cases by means of relations between objects in the environment. Combined with reinforcement learning, QCBRL allows the agent to learn new qualitative cases at runtime, without assuming a pre-processing step. In order to avoid cases that do not lead to the maximum performance, QCBRL executes case-base maintenance, excluding these cases and obtaining new (more suitable) ones. Experimental evaluation of QCBRL was conducted in a simulated robot-soccer environment, in a real humanoid-robot environment and on simple tasks in two distinct gridworld domains. Results show that QCBRL outperforms traditional RL methods. As a result of running QCBRL in autonomous soccer matches, the robots performed a higher average number of goals than those obtained when using pure numerical models. In the gridworlds considered, the agent was able to learn optimal and safety policies.