Repositório do Conhecimento Institucional do Centro Universitário FEI
 

Ciência da Computação

URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/342

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Imagem de Miniatura
    Trabalho de Conclusão de Curso
    VMPD (VEHICLE MANEUVER PATTERN DETECTION):
    (2020-06-17) GUILHERME COELHO SMALL ZICARI; NATHÁLIA CÂNDIDO; TIAGO COSTA ARRAZI; RAFAEL SILVA MOREIRA
    Um dos grandes problemas das sociedades atuais é o elevado crescimento da população, e consequentemente de veículos automotivos. Esse crescimento implica na elevação da com- plexidade do trânsito, no qual a quantidade de elementos em que deve se manter o foco é cada vez maior. Dada esta complexidade florescente, a probabilidade de acidentes devido a erros de julgamento cometidos por condutores, assim como a dificuldade de fiscalização pelas autorida- des, crescem. Este estudo tem como objetivo realizar a detecção de manobras que ocorrem ao redor do veículo o qual o motorista ocupa, o veículo-base. O sistema proposto baseia-se em técnicas de visão computacional, aprendizado de máquina e séries temporais. Com o objetivo de capturar uma visão mais ampla, são utilizadas câmeras que abrangem diferentes perspecti- vas a partir do veículo-base. Informações de interesse são extraídas e transformadas em séries temporais, posteriormente analisadas por uma rede neural, classificando manobras detectadas. Dada esta classificação, a metodologia se prova útil para a detecção de perigos e pontos de inte- resse realizada em sistemas de direção semiautônomos, ou mesmo a identificação de condução perigosa para a educação no trânsito. Até onde se sabe, este problema não foi abordado sob a perspectiva de primeira pessoa. Os resultados obtidos são promissores, com a menor acurácia média de 83,92% entre todas as validações. Individualmente, os resultados utilizando a valida- ção cruzada por K-Fold atingiram uma acurácia média de 99,63% e a validação cruzada manual não enviesada, 90,88%.
  • Imagem de Miniatura
    Trabalho de Conclusão de Curso
    GERAÇÃO DE IMAGEM A PARTIR DE SENTENÇA DESCRITIVA
    (2020-06-17) AUGUSTO TUROLLA; MATEUS DAVI SILVA; IGOR DO NASCIMENTO ALVES; ALEXANDRE KENJY DE SIQUEIRA KUMAGAI
    Com o avanço tecnológico, sobretudo nas áreas de Inteligência Artificial(IA), Processa- mento de Linguagem Natural(PLN) e Aprendizado Profundo existem expectativas promissoras para futuras tarefas que a computação possivelmente será capaz de realizar. Muitos trabalhos realizados ao longo desta década tem utilizado redes neurais para resolver problemas que po- dem ser solucionados seguindo as técnicas de IA, tendo alcançado excelentes avanços na área. Um destes problemas é o da capacidade da computação de ilustrar contextos diversos. Alguns exemplos deste problema estão relacionados à indústria da literatura, cinematografia e de jogos ou de criar cenas para áreas comercial e publicitária. Avanços significativos que surgiram no campo das redes neurais e PLN são os assistentes pessoais que estão cada vez mais presentes no nosso cotidiano. Neste trabalho, é proposto um modelo capaz de gerar imagens a partir de sentenças textuais. Para construir o modelo é utilizada uma rede neural para gerar imagens, cha- mada de rede generativa adversarial(GAN), que foi treinada utilizando o dataset MS COCO, que são bases de dados de imagem e meta-dados que descrevem os objetos e cenários contidos nas imagens, e funções de ativação diferentes das utilizadas habitualmente, com o objetivo de superar o estado da arte. As contribuições são: (i) Um estudo sobre a influência da aplicação das diferentes funções de ativação sobre o modelo generativo adversarial; (ii) um modelo pré- treinado de Redes Neurais Generativas Adversariais, para gerar imagens de ambientes urbanos artificiais através de sentenças descritivas de cenas urbanas; e (iii) a disponibilização de um da- taset para treinamentos com modelos urbanos. O projeto obteve sucesso em gerar imagens que se assemelham ao contexto urbano apresentando uma assertividade de 27% através da função ReLU como ativadora da rede neural. Em conjunto, é apresentado também uma comparação da geração de imagens urbanas e outro tipo de imagens a partir de um espaço amostral com menor riqueza de detalhes, como flores.