Engenharia Química
URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/25
Navegar
- Acoplamento das reações de Fischer-Tropsch e, reator mutifuncional(2016) Santos, Rafael Soares dosOs reatores multifuncionais são equipamentos que promovem o acoplamento térmico de uma reação exotérmica e uma reação endotérmica, fazendo com que a primeira forneça a energia necessária para a segunda ocorrer, simultaneamente ou em etapas. Essa combinação de duas operações unitárias vai de encontro ao conceito de integração de processos, com objetivo de reduzir o consumo de energia e consequentemente o custo operacional de processos industriais. Neste trabalho estudou-se as reações da síntese de Fischer-Tropsch acoplada termicamente com a desidrogenação de metilciclohexano, em um reator multifuncional, com intuito da integração da produção de combustíveis como gasolina e hidrogênio. Foi feita a modelagem matemática do reator, escrevendo-se as equações de balanço material para cada componente dos dois sistemas reacionais, bem como as equações de conservação de energia para as reações exotérmica e endotérmica. A modelagem foi feita em regime permanente, por meio de equações diferenciais ordinárias, e o sistema de equações obtido foi resolvido em MATLAB; o modelo cinético dessas reações foi levantado em literatura. Foram simuladas diferentes condições operacionais para a operação do reator em escoamento paralelo, com uma geometria definida, visando a otimização da produção de gasolina. Nas melhores condições, o rendimento da produção de gasolina atinge 10,69 g/100g(H2+CO).
- Acoplamento térmico das reações de desidratação do etanol e hidrodealquilação do tolueno em reator multifuncional(2019) Santos, F. A. R.Estudos sobre intensificação de processos, que visam transformar a estrutura das plantas químicas, tornando-as mais compactas, seguras, de maior eficiência energética e menor impacto ambiental, aumentam cada vez mais. Uma das propostas é a utilização de reatores multifuncionais, possibilitando realizar um acoplamento térmico, em que a energia necessária para a condução de uma reação endotérmica é obtida pela energia liberada em uma reação exotérmica, dispensando ou reduzindo o uso de utilidade. Neste trabalho, foi estudada a reação de desidratação do etanol acoplada termicamente com a hidrodealquilação do tolueno. Essa escolha se deveu à importância de etileno e benzeno, produtos dessas reações, na indústria petroquímica. Foi feita a modelagem matemática do reator, escrevendo-se o balanço material, de energia e a perda de carga no equipamento, admitindo-se um meio pseudo-homogêneo. As leis cinéticas foram tomadas da literatura e as análises feitas em regime permanente e transiente. A solução deste sistema foi realizada pelo software MATLab, por solução direta de EDO’s no estudo de regime permanente, em um problema de valor inicial para o escoamento paralelo, e por diferenças finitas para o estudo de escoamento contracorrente e em regime transiente. Com uma geometria definida, estudou-se um caso base e posteriormente avaliou-se a influência de alguns parâmetros de processo na conversão das reações, visando a otimização da produção de ambos produtos. Mostrou-se que o acoplamento sugerido é factível, com perfis controlados de temperatura no reator e baixa perda de carga, atingindo conversões superiores a 80% para as duas reações. A melhor condição obtida no escoamento paralelo foi simulada em escoamento contracorrente e foi possível aumentar a conversão do tolueno para 99%. O estudo em regime transiente apresentou o efeito de perturbações nas temperaturas e vazões de entrada, obtendo-se dinâmicas bastante rápidas, da ordem de décimos de segundo, nas variáveis de saída do problema
- Cinética de transesterificação de óleo de palma em meio alcalino(2016) Ferreira, M. C.
Trabalho de Conclusão de Curso Estudo de melhoria da eficiência energética de uma planta de resinas(2022-12-07) Barbeta, Ana Carolina Silva ; Perossi, Beatriz de Oliveira; Sorbile, Gabriela Reche ; Stelmasuk, Guilherme FernandezNa indústria química, o consumo energético se traduz, em grande parte, na forma de energia térmica, especialmente no aquecimento e resfriamento de equipamentos e produtos. Por conta disso, este trabalho visa reduzir o gasto de energia em uma fábrica de resinas através da otimização e reaproveitamento das fontes de calor existentes. Por ser uma fábrica antiga, a planta estudada possui muito espaço para melhorias que gerem aumento da eficiência do processo. O ponto focal escolhido para o presente estudo foi um reator de mistura multipropósito e seu trocador de calor do tipo casco e tubos, onde foram estudadas três propostas de reaproveitamento do calor dissipado pelo óleo. A primeira delas consiste em alternar a corrente de água de resfriamento do trocador já existente com água de diluição do processo que deve ser aquecida, conforme necessidade; já a segunda ideia considera um desvio na corrente de óleo com a inclusão de um novo trocador de calor, em prol de aquecer exclusivamente a água de diluição e garantir sua pureza; por fim, a terceira proposta leva em conta a substituição do vapor utilizado no sistema de aquecimento do armazenamento da resina fabricada pelo próprio óleo recirculado no sistema do reator. Optou-se por seguir com as duas últimas alternativas após a realização da análise de viabilidade técnica do processo, para a qual foi preciso estimar algumas variáveis e propriedades, como a vazão de escoamento de óleo no sistema, avaliada entre 45 e 78 m³/h. A partir dos dados encontrados, foi feita uma estimativa de custo de aquisição e instalação do novo trocador de calor, que possibilitou estipular um tempo de retorno médio de 20 meses para este investimento, comprovando sua viabilidade econômica. Para o trocador proposto, obteve-se um intervalo de custos para diferentes condições de operação do processo, as quais deverão ser apresentadas à empresa em estudo como um conjunto de soluções para futura discussão e decisão. Por fim, a partir do estudo dos pontos de economia no processo, foi estimada uma redução anual de R$ 1,5 M na geração de vapor na caldeira, considerando o gás natural, a água desmineralizada e a implementação das duas propostas viáveis, representando 27,3% de redução nos gastos gás natural para a empresa.- Estudo de processo para a obtenção de triacetina a partir de glicerol(2018) Pereira, V. M. S.Com a disseminação da utilização de combustíveis renováveis, a produção de biodiesel aumentou muito nas últimas décadas. Em função disto, o glicerol, um subproduto dessa produção, tornou-se abundante no mercado químico, passando a ter um baixo valor de venda. Uma rota rentável para o beneficiamento do glicerol é a conversão dele em triacetina, via processo de acetilação. A triacetina é um importante acetato utilizado como aditivo de combustível, aditivo alimentar, produção de plásticos biodegradáveis, dentre outros. Por esse motivo, o presente trabalho tem como intuito estudar o processo de produção de triacetina a partir do glicerol, simulando duas diferentes topologias: uma delas combinando um reator de mistura perfeita e uma coluna de destilação e a outra envolvendo uma coluna de destilação reativa. Foram obtidas as energias livre de Gibbs para acetilação do glicerol e dos seus produtos para três modelos cinéticos, disponibilizados na literatura, usando como catalisador ácido acético em excesso, ácido sulfúrico e Amberlyst-15. O modelo com catálise de excesso de ácido acético apresentou os melhores resultados para os produtos, com baixos erros quando comparado aos dados de Gibbs apresentados na literatura. O sistema reacional foi representado por três reações de equilíbrio, nas quais são conduzidas acetilações sucessivas. A fim de se avaliar a influência da temperatura sobre a seletividade e a conversão nesse sistema, fez-se uma varredura em Matlab, num modelo matemático em batelada, simulado até se atingir o equilíbrio. Esse mapeamento mostrou que é interessante se trabalhar com temperatura próxima a 373 K, o que leva a razoável conversão e boa seletividade. As topologias de processo foram simuladas em AspenPlus, utilizando o NRTL como pacote termodinâmico. Configurações para a coluna reativa foram simuladas, realizando analises com a alimentação dos produtos sendo feita nos mesmo estágio de alimentação, em estágios diferentes e utilizando dois elementos de arraste na coluna reativa, acetado de isobutila e hexano. Essas simulações mostraram que o emprego de coluna de destilação reativa com alimentação em pratos diferentes proporcionaram conversão de quase 75% de glicerina e com consumo específico de utilidade quente e fria de 4,0 e 3,9 MJ·kg-1 , respectivamente. Essa foi a maior conversão nos sistemas estudados e, além disso, com os menores consumos específicos de energia.
Trabalho de Conclusão de Curso Otimização de reator de polimerização(2021-12-10) Piedade, Fernanda Gomes; Camilo, Lara Cristina da Silva; Prevedel, Matheus Menna Barreto; Nascimento, Natália BravinA indústria de tintas e vernizes no país evoluiu muito nos últimos anos devido à crescente necessidade dos mercados nacional e internacional, o que exigiu das empresas o fornecimento de produtos e serviços com melhor qualidade. Nessa indústria, o poli metacrilato de metila (PMMA) é um produto relevante, logo é necessário garantir que este apresente suas principais propriedades mecânicas e químicas dentro das especificações exigidas. Tais propriedades como resistência mecânica e química são afetadas por características poliméricas como massa molar média, índice de fluidez, compatibilidade entre o polímero e o solvente, dentre outras, que são amplamente influenciadas pelas condições de processo. Sendo assim, este trabalho propõe avaliar e otimizar o processo de polimerização de metacrilato de metila (MMA) realizado em um reator semi-batelada, cuja reação é conduzida em solução, aplicando como solvente o xilol e peróxido de benzoíla como iniciador da polimerização. Para isso, estudou-se o modelo matemático que descreve o sistema e, através do software Matlab, simulou-se e aprimorou-se as condições operacionais da polimerização do metacrilato de metila (MMA) em um reator industrial. A partir do ajuste de parâmetros cinéticos do modelo aplicado, que objetivavam a minimização do erro quadrático entre a conversão experimental e a prevista pelo modelo, foi possível adequar o valor para a energia de ativação de decomposição do iniciador, cujo valor é de 131,87 kJ/mol, permitindo que o reator industrial fosse melhor representado pelo modelo. Com isso foi possível avaliar as condições operacionais e realizar a otimização do processo, cujos principais resultados foram a diminuição da temperatura de 116°C do meio reacional para 110°C, e a redução do tempo de polimerização em até uma hora e do tempo de adição em até uma hora e meia, sem alterar a relação monômero/iniciador. Para esses resultados o com grau de conversão e o peso molecular médio ponderal mínimos atingido são de 97,73% e 6,29E4 g/mol respectivamente. Entretanto a taxa de calor gerada na polimerização excede em 50% o valor limite de 4,5E5 W, sendo necessária uma futura análise econômica para verificar a possibilidade de expandir o potencial de resfriamento atual.