Engenharia Química
URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/25
Navegar
2 resultados
Resultados da Pesquisa
- Analysis of the effects of neuro-fuzzy control configuration parameters on PH neutralization process(2018) Mazzali D.G.Z.; Franco I.C.; Silva F.V.© 2018 Walter de Gruyter GmbH, Berlin/Boston.The pH neutralization process is typical in chemical, biological and petrochemical industries. One of the major challenges to control it is to understand its nonlinearities and that requires several fine adjustments from conventional controls. Artificial Intelligence has been used to study these nonlinearities; one of them is Neuro-Fuzzy Logic, which was investigated in this work to develop controls dedicated to this process. These controls are formed by logical structures and may be adjusted to different configurations. In practical applications, it is highly important to adapt control parameters based on artificial intelligence to obtain better performance. The present work studied the effect of different configurations of a neuro-fuzzy control on the performance of a regulatory control to pH neutralization process by means of a virtual plant developed in both Indusoft and Matlab environments. For both variables, pH and reactor level control, membership function (MF) = [Gaussian], method "OR" = [probabilistic], method "E" = [product], type of MF output = [linear] and the optimization method = [hybrid], have improved control performance, which confirms the importance of configuration choices in neuro-fuzzy control adjustments. Moreover, the most determining factor in NFC performance is the types of membership functions.
- An adaptive fuzzy feedforward-feedback control system applied to a saccharification process(2018) Fonseca R.R.; Sencio R.R.; Franco I.C.; Da Silva F.V.© 2018 Walter de Gruyter GmbH, Berlin/Boston.In industrial bioprocess control, disturbance sources typically influences process variable regulation. These disturbances may reduce a system control performance or even affect the final bioproduct quality. Therefore, feedforward control is desired because it anticipates the effects caused by these disturbances in an attempt to keep the process variable at the setpoint value. However, designing a feedforward control law requires process modeling, which can be a tough task when dealing with bioprocesses that are intrinsically nonlinear and multivariable systems. Thus, an adaptive feedforward control law or other advanced control system is needed for satisfactory disturbance rejection. For this reason, a general fuzzy feedforward control system is proposed in this paper to replace the classical feedforward control, making it easier to implement the feedforward control action by avoiding nonlinear and multivariable process modeling. The adaptive fuzzy feedforward-feedback (A4FB) system was applied to a product concentration control loop in an enzymatic reactor, to reject disturbances caused by variations in the substrate and enzymatic solutions feed concentration. The results showed that the A4FB controller rejected much more disturbance effects than classical feedforward control law, demonstrating its advantage, supported by not only its simple implementation, but also its improved disturbance rejection.