UM MODELO BAYESIANO BASEADO EM ALGORITMOS BIO-INSPIRADOS PARA CLASSIFICAÇÃO BINÁRIA
dc.contributor.advisor | Paulo Sérgio Silva Rodrigues | |
dc.contributor.advisorLattes | http://lattes.cnpq.br/0302011461580302 | |
dc.contributor.author | RICARDO MORELLO SANTOS | |
dc.contributor.author | THYAGO MELO DOS SANTOS | |
dc.date.accessioned | 2024-08-14T20:42:43Z | |
dc.date.available | 2024-08-14T20:42:43Z | |
dc.date.issued | 2020-06-17 | |
dc.description.abstract | Nos últimos anos, nota-se o crescente aumento na geração de dados digitais, sobretudo por conta da consolidação da internet como meio de comunicação. Proporcionalmente, cresce também a quantidade de algoritmos e metodologias propostas para mineração de dados e identificação de tendências ou padrões, hoje uma tarefa inviável à capacidade analítica humana. No entanto, de acordo com a literatura, estas técnicas apresentam performance diferente quando aplicadas em problemas ou bases de dados diferentes. Assim, este trabalho propõe um modelo bayesiano que agrega a saída de diferentes algoritmos de classificação, ponderando-as de maneira a priorizar o classificador com melhor performance para o problema em questão. Foram aplicados e comparados algoritmos consolidados na literatura, considerando dois conjuntos. O primeiro deles envolve o Supported Vector Machine (SVM) e o XGBoost, enquanto o segundo compreende SVM, Tensorflow e uma rede neural do tipo Multilayer Perceptron (MLP). Para otimização do processo combinatório de ponderação dos classificadores no modelo proposto, foram também aplicados e comparados dois algoritmos bio-inspirados, Firefly e Particle Swarm Optimization. A metodologia foi aplicada em três bases de dados de classificação binária, sendo duas para predição da rotatividade de clientes, Telco Customer Churn e Churn in Telecom’s Dataset, e uma terceira base para predição de doenças cardiovasculares, Cardiovascular Disease Dataset. Os resultados obtidos mostram que o modelo proposto priorizou os classificadores com maior performance, portanto preservando a saída com maior assertividade, sobretudo na base de dados Telco Customer Churn. Neste caso, a despeito da maior variação nas classificações, o método proposto apresentou estabilidade na classificação. Nas demais bases de dados, quando os classificadores possuem performance similar, o modelo proposto apresentou assertividade também similar aos demais. | pt_BR |
dc.format.extent | 115 | |
dc.identifier.uri | https://repositorio.fei.edu.br/handle/FEI/5476 | |
dc.language.iso | pt_BR | |
dc.rights | Restrito | |
dc.subject | Aprendizado supervisionado | |
dc.subject | Mineração de dados | |
dc.subject | Classificação binária | |
dc.subject | Teorema de Bayes | |
dc.subject | Algoritmos bio-inspirados | |
dc.title | UM MODELO BAYESIANO BASEADO EM ALGORITMOS BIO-INSPIRADOS PARA CLASSIFICAÇÃO BINÁRIA | |
dc.type | Trabalho de Conclusão de Curso | |
fei.date.entrega | 2020 |