UM MODELO BAYESIANO BASEADO EM ALGORITMOS BIO-INSPIRADOS PARA CLASSIFICAÇÃO BINÁRIA

dc.contributor.advisorPaulo Sérgio Silva Rodrigues
dc.contributor.advisorLatteshttp://lattes.cnpq.br/0302011461580302
dc.contributor.authorRICARDO MORELLO SANTOS
dc.contributor.authorTHYAGO MELO DOS SANTOS
dc.date.accessioned2024-08-14T20:42:43Z
dc.date.available2024-08-14T20:42:43Z
dc.date.issued2020-06-17
dc.description.abstractNos últimos anos, nota-se o crescente aumento na geração de dados digitais, sobretudo por conta da consolidação da internet como meio de comunicação. Proporcionalmente, cresce também a quantidade de algoritmos e metodologias propostas para mineração de dados e identificação de tendências ou padrões, hoje uma tarefa inviável à capacidade analítica humana. No entanto, de acordo com a literatura, estas técnicas apresentam performance diferente quando aplicadas em problemas ou bases de dados diferentes. Assim, este trabalho propõe um modelo bayesiano que agrega a saída de diferentes algoritmos de classificação, ponderando-as de maneira a priorizar o classificador com melhor performance para o problema em questão. Foram aplicados e comparados algoritmos consolidados na literatura, considerando dois conjuntos. O primeiro deles envolve o Supported Vector Machine (SVM) e o XGBoost, enquanto o segundo compreende SVM, Tensorflow e uma rede neural do tipo Multilayer Perceptron (MLP). Para otimização do processo combinatório de ponderação dos classificadores no modelo proposto, foram também aplicados e comparados dois algoritmos bio-inspirados, Firefly e Particle Swarm Optimization. A metodologia foi aplicada em três bases de dados de classificação binária, sendo duas para predição da rotatividade de clientes, Telco Customer Churn e Churn in Telecom’s Dataset, e uma terceira base para predição de doenças cardiovasculares, Cardiovascular Disease Dataset. Os resultados obtidos mostram que o modelo proposto priorizou os classificadores com maior performance, portanto preservando a saída com maior assertividade, sobretudo na base de dados Telco Customer Churn. Neste caso, a despeito da maior variação nas classificações, o método proposto apresentou estabilidade na classificação. Nas demais bases de dados, quando os classificadores possuem performance similar, o modelo proposto apresentou assertividade também similar aos demais.pt_BR
dc.format.extent115
dc.identifier.urihttps://repositorio.fei.edu.br/handle/FEI/5476
dc.language.isopt_BR
dc.rightsRestrito
dc.subjectAprendizado supervisionado
dc.subjectMineração de dados
dc.subjectClassificação binária
dc.subjectTeorema de Bayes
dc.subjectAlgoritmos bio-inspirados
dc.titleUM MODELO BAYESIANO BASEADO EM ALGORITMOS BIO-INSPIRADOS PARA CLASSIFICAÇÃO BINÁRIA
dc.typeTrabalho de Conclusão de Curso
fei.date.entrega2020
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
TCC201___CBB.pdf
Tamanho:
3.24 MB
Formato:
Adobe Portable Document Format
Licença do Pacote
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.75 KB
Formato:
Item-specific license agreed upon to submission
Descrição: