Construção e teste de um interferômetro para medidas de índice de refração de sistemas gasosos
Carregando...
Arquivos
Citações na Scopus
Tipo de produção
Dissertação
Data
2023
Autores
Santos, Juliana Brunelli Stoco
Orientador
Tôrres, Ricardo Belchior
Periódico
Título da Revista
ISSN da Revista
Título de Volume
Citação
SANTOS, Juliana Brunelli Stoco. Construção e teste de um interferômetro para medidas de índice de refração de sistemas gasosos. 2023. 99 f. Dissertação (Mestrado em Engenharia Química) - Centro Universitário FEI, São Bernardo do Campo, 2023. Disponível em: https://doi.org/10.31414/EQ.2023.D.131679.
Texto completo (DOI)
Palavras-chave
Refratometria,Gladstone-Dale
Resumo
Os combustíveis fósseis têm sido utilizados como uma importante fonte de energia convencional para os setores de transporte, contudo o seu consumo em excesso trouxe sérias carências energéticas, provocando graves problemas para a humanidade. Diante desse cenário, torna-se imprescindível a busca e o desenvolvimento de fontes alternativas de energia que sejam renováveis. O hidrogênio se apresenta como uma possibilidade atraente, sendo apontado como uma fonte de energia limpa, pois sua combustão gera apenas vapor de água. A reforma a vapor do etanol é considerada um processo vantajoso para a obtenção de hidrogênio, pois apresenta alto rendimento no produto, é um processo neutro em carbono e a matéria-prima pode vir de fontes de biomassa. O processo de reforma produz uma corrente gasosa composta principalmente por hidrogênio, metano, monóxido de carbono e dióxido de carbono. Portanto, o presente estudo se propôs construir e testar um sistema interferométrico, com a finalidade de identificar a composição desses gases na mistura resultante da reforma a vapor, utilizando medidas de índice de refração. A refratometria é uma técnica usada para determinar a composição de misturas gasosas, através das regras refrativas de misturas. Para atingir o objetivo deste trabalho foi utilizada a regra de mistura de Gladstone-Dale, levando-se em consideração a temperatura de cada amostra. Para realizar os experimentos foi feita uma montagem composta por três elementos principais, um interferômetro de Michelson, iluminado por lasers emitindo a 632,8 nm, 532 nm, 655,3 nm e 850 nm; um sistema de vácuo com uma bomba mecânica, que realiza a medição da pressão absoluta, e um sistema para a contagem de franjas de interferência. Para testar a validade desse arranjo, foram realizados experimentos com o ar atmosférico e com os gases puros de argônio, nitrogênio e dióxido de carbono, que apresentaram resultados satisfatórios, próximos aos da literatura, com baixos desvios experimentais. Também foi efetuada uma análise para uma mistura binária, contendo argônio e nitrogênio, que apresentou resultados aceitáveis ao compará-los com os valores obtidos pela regra de Gladstone-Dale, sendo que os desvios experimentais não ultrapassaram de 1,5%. A mesma comparação foi realizada para o ar atmosférico e verificou-se que os desvios foram menores que 0,5%, validando o sistema interferométrico utilizado. Por fim, foi demonstrado que é possível determinar a composição de uma mistura gasosa nesse sistema através da regra de Gladstone-Dale e utilizando lasers com comprimentos de ondas mais afastados
Fossil fuels have been used as an important source of conventional energy for the transport sectors, but their excessive consumption has brought serious energy shortages, causing serious problems for humanity. Given this scenario, searching for and developing alternative and renewable energy becomes essential. Hydrogen presents itself as an attractive possibility, being pointed out as a source of clean energy because its combustion generates only water vapor. The steam reforming of ethanol is considered an advantageous process for obtaining hydrogen, because it presents a high yield in the product, is a carbon neutral process, and the feedstock can come from biomass sources. The reforming process produces a gas stream composed mainly of hydrogen, methane, carbon monoxide, and carbon dioxide. Therefore, the present study proposed to build and test an interferometric system, with the purpose of identifying the composition of these gases in the mixture resulting from steam reforming, using refractive index measurements. Refractometry is a technique used to determine the composition of gas mixtures through the refractive rules of mixtures. To achieve the objective of this work, the Gladstone-Dale mixing rule was used, taking into account the temperature of each sample. To perform the experiments, an assembly composed of three main elements was assembled, a Michelson interferometer, illuminated by lasers emitting at 632.8 nm, 532 nm, 655,3 nm, and 850 nm; a vacuum system with a mechanical pump, which performs the measurement of absolute pressure, and a system for counting interference fringes. To test the validity of this arrangement, experiments were carried out with atmospheric air and with the pure gases of argon, nitrogen, and carbon dioxide, which presented satisfactory results, close to those of the literature, with low experimental deviations. An analysis was also performed for a binary mixture, containing argon and nitrogen, which presented acceptable results when comparing them with the values obtained by the Gladstone-Dale rule, and the experimental deviations did not exceed 1.5%. The same comparison was performed for atmospheric air, and it was found that the deviations were less than 0.5%, validating the interferometric system used. Finally, it has been demonstrated that it is possible to determine the composition of a gas mixture in this system through the Gladstone-Dale rule and using lasers with more distant wavelengths
Fossil fuels have been used as an important source of conventional energy for the transport sectors, but their excessive consumption has brought serious energy shortages, causing serious problems for humanity. Given this scenario, searching for and developing alternative and renewable energy becomes essential. Hydrogen presents itself as an attractive possibility, being pointed out as a source of clean energy because its combustion generates only water vapor. The steam reforming of ethanol is considered an advantageous process for obtaining hydrogen, because it presents a high yield in the product, is a carbon neutral process, and the feedstock can come from biomass sources. The reforming process produces a gas stream composed mainly of hydrogen, methane, carbon monoxide, and carbon dioxide. Therefore, the present study proposed to build and test an interferometric system, with the purpose of identifying the composition of these gases in the mixture resulting from steam reforming, using refractive index measurements. Refractometry is a technique used to determine the composition of gas mixtures through the refractive rules of mixtures. To achieve the objective of this work, the Gladstone-Dale mixing rule was used, taking into account the temperature of each sample. To perform the experiments, an assembly composed of three main elements was assembled, a Michelson interferometer, illuminated by lasers emitting at 632.8 nm, 532 nm, 655,3 nm, and 850 nm; a vacuum system with a mechanical pump, which performs the measurement of absolute pressure, and a system for counting interference fringes. To test the validity of this arrangement, experiments were carried out with atmospheric air and with the pure gases of argon, nitrogen, and carbon dioxide, which presented satisfactory results, close to those of the literature, with low experimental deviations. An analysis was also performed for a binary mixture, containing argon and nitrogen, which presented acceptable results when comparing them with the values obtained by the Gladstone-Dale rule, and the experimental deviations did not exceed 1.5%. The same comparison was performed for atmospheric air, and it was found that the deviations were less than 0.5%, validating the interferometric system used. Finally, it has been demonstrated that it is possible to determine the composition of a gas mixture in this system through the Gladstone-Dale rule and using lasers with more distant wavelengths