Análise e comparação de diferentes composições de powertrain em base termodinâmica: um direcionamento do desenvolvimento tecnológico automotivo
Carregando...
Arquivos
Citações na Scopus
Tipo de produção
Dissertação
Data
2024
Autores
Feliciano, Henrique Naim Fenianos
Orientador
Mady, C. E.
Periódico
Título da Revista
ISSN da Revista
Título de Volume
Citação
FELICIANO, Henrique Naim Fenianos. Análise e comparação de diferentes composições de powertrain em base termodinâmica: um direcionamento do desenvolvimento tecnológico automotivo. 2024. 117 p. Dissertação (Mestrado em Engenharia Mecânica) - Centro Universitário FEI, São Bernardo do Campo 2024. Disponível em: https://doi.org/10.31414/EM.2024.D.131763.
Texto completo (DOI)
Palavras-chave
Propulsão,Eletrificação,Análise de vida útil
Resumo
A discussão acerca da hibridização e eletrificação dos veículos leves e pesados tem
sido alvo de diversas iniciativas ao redor do mundo, almejando-se reduzir emissões de gases
de efeito estufa, baseando-se em uma análise do berço ao túmulo. Sabe-se que existem fortes
incentivos governamentais e fiscais, promovendo um aumento na produção e venda de veículos
híbridos e elétricos. Apesar da mitigação significativa ou completa, do tanque à roda, existem as
emissões decorrentes da geração e distribuição de energia elétrica para recarga destes dos veículos.
Desta forma, a eficiência exergética é uma ferramenta para comparação de diferentes tipos de
motorização para o mesmo produto, i.e., transporte. Os dados utilizados para tais comparações
provém de simulações de dinâmica longitudinal das configurações veiculares. Assim, é possível
quantificar a exergia destruída em um ciclo, seja esta proveniente puramente do combustível do
veículo (E22 ou E100) ou proveniente da malha elétrica disponível no Brasil (contemplando assim
a destruição de exergia nas usinas do país). Ademais, foi realizada uma análise de sensibilidade
da avaliação do ciclo de vida (ACV) para quantificar emissões provenientes da produção, uso e
descarte dos produtos em diversos cenários. Também foram levantados índices de renovabilidade
exergética complementar a ACV. Os resultados apontam uma destruição de exergia duas vezes
maior em um veículo à combustão interna quando comparado a um veículo elétrico à bateria
(análise do poço à roda), o que pela ótica do uso racional da energia pode trazer benefícios à
sociedade. Os resultados em veículos híbridos variam em função da calibração de uso entre
motor a combustão interna e motor elétrico, tornando a exergia consumida e emissões de CO2
dependentes de tal. Os resultados de CO2 emitidos nos ciclos estudados indicam que o Etanol
Hidratado E100 pode ser uma alternativa viável à gasolina E22 com uma infraestrutura já presente
no Brasil, uma vez que os veículos elétricos podem ter emissões do poço à roda que variam em
função da matriz elétrica a ponto de inviabilizar seu uso para redução de emissões. Além disso,
a mudança de matriz energética é dada como significativa, representando assim a discrepância
da destruição de exergia para um mesmo veículo em um mesmo ciclo, mas em diferentes locais,
e assim enfatizando a necessidade de direcionamento de cada configuração de powertrain para
determinadas aplicações. Em análise de ciclo de vida, observa-se um maior uso de exergia
e emissões decorrentes da produção dos veículos elétricos, enquanto tais parâmetros variam
durante seu uso a depender da matriz elétrica em que é realizada a recarga, sendo que para
importação da Europa e operação no Brasil os elétricos apresentam uma menor pegada de carbono
a partir dos 75.000 quilômetros de uso, para E22 e a partir dos 100.000 quilômetros de uso
para E100 (comparados com veículos ICEV produzidos e operados no Brasil). O levantamento
dos índices de renovabilidade apontam um possível direcionamento dos veículos elétricos para
centros urbanos e de veículos a combustão interna para uso rodoviário. Mostrou-se que veículos
elétricos na Europa podem ser menos renováveis do que veículos a combustão movidos a E100
A lot is currently discussed regarding hybridization and electrification of light and heavy vehicles (passenger or commercial) throughout the world, in a way to reduce impacts associated to Greenhouse Gases emissions (GHG) from Internal Combustion Engines (ICE). Significant advances are performed in Europe and China through governmental and fiscal incentives, promoting a slope in sale and usage of hybrid and electric vehicles. Even though there is a significant (or complete) reduction of tailpipe emissions, other emissions are aggregated due to manufacturing and discard of such vehicles, as well as the high energy usage for battery production and emissions directly dependent to electric power production and distribution for recharge of hybrid and electric vehicles. In that sense, this project proposes to study and analyse the exergetic efficiency during the usage of different powertrain types, thus contemplating a quantitative and qualitative analysis of energy by considering its maximum work performance potential from a reference for traditional ICE (with fuel variation), Plug-in Hybrids (PHEV) and Battery Electric (BEV), in order to direct their usage to each determined application, since there is a current understanding that the future of the automotive grid in Brazil shall be a mix of each solution (among many others not approached by this work). Data utilized for such comparisons are generated from longitudinal dynamics simulation for comparison of the energetic use of each vehicle configuration and total exergy consumed and destroyed in a cycle, whether it is purely from vehicle fuel (E22 or E100) or partially or totally bound from the Brazilian electric grid, thus contemplating the exergy destruction in the country’s power plants. A sensitivity analysis is done to determine the influence of the electric grid on the total destroyed exergy per cycle in the electric vehicles, as well as a life cycle analysis (LCA) evaluation for exergetic and emissions bound from production and usage of such vehicles in several scenarios. Renewability indexes were also raised in order to quantify the environmental sustainability of each case study, considering energy sources and products. Results point to a exergy destruction twice as great in an internal combustion engine vehicle when compared to a BEV (well to wheel), which by an optic of rational energy usage can bring benefits to society. Results in hybrid vehicles vary as a function of the calibration of usage between ICE and electric motor, as well as consumed exergy and CO2 equivalent emissions. Equivalent CO2 results indicate that E100 hydrous ethanol can be a viable alternative to E22 gasoline with infrastructure ready in Brazil, since electric vehicles might have well to wheel emissions that make their usage pointless. Besides, change in electric matrix is found as significative, representing a high discrepancy of exergy usage for a vehicle in a determined cycle, thus emphasizing the need to direct each powertrain configuration to determined applications. In a Life Cycle Analysis, it is observed a higher usage of exergy and CO2 equivalent emissions related to production of electric vehicles, while such parameters vary during the vehicle’s usage depending on the electric matrix available for recharging. For vehicles imported from Europe and working in Brazil, electric vehicles have less equivalent emissions from around 75.000 kilometers for E22 and 100.000 kilometers for E100 (compared to ICEV produced and working in Brazil). The Renewability Indexes point to a possible direction of electric vehicles towards urban centers and ICEVs towards highway usage, whereas the parameter indicates that BEVs in Europa can be less sustaniable than E100 ICEVs
A lot is currently discussed regarding hybridization and electrification of light and heavy vehicles (passenger or commercial) throughout the world, in a way to reduce impacts associated to Greenhouse Gases emissions (GHG) from Internal Combustion Engines (ICE). Significant advances are performed in Europe and China through governmental and fiscal incentives, promoting a slope in sale and usage of hybrid and electric vehicles. Even though there is a significant (or complete) reduction of tailpipe emissions, other emissions are aggregated due to manufacturing and discard of such vehicles, as well as the high energy usage for battery production and emissions directly dependent to electric power production and distribution for recharge of hybrid and electric vehicles. In that sense, this project proposes to study and analyse the exergetic efficiency during the usage of different powertrain types, thus contemplating a quantitative and qualitative analysis of energy by considering its maximum work performance potential from a reference for traditional ICE (with fuel variation), Plug-in Hybrids (PHEV) and Battery Electric (BEV), in order to direct their usage to each determined application, since there is a current understanding that the future of the automotive grid in Brazil shall be a mix of each solution (among many others not approached by this work). Data utilized for such comparisons are generated from longitudinal dynamics simulation for comparison of the energetic use of each vehicle configuration and total exergy consumed and destroyed in a cycle, whether it is purely from vehicle fuel (E22 or E100) or partially or totally bound from the Brazilian electric grid, thus contemplating the exergy destruction in the country’s power plants. A sensitivity analysis is done to determine the influence of the electric grid on the total destroyed exergy per cycle in the electric vehicles, as well as a life cycle analysis (LCA) evaluation for exergetic and emissions bound from production and usage of such vehicles in several scenarios. Renewability indexes were also raised in order to quantify the environmental sustainability of each case study, considering energy sources and products. Results point to a exergy destruction twice as great in an internal combustion engine vehicle when compared to a BEV (well to wheel), which by an optic of rational energy usage can bring benefits to society. Results in hybrid vehicles vary as a function of the calibration of usage between ICE and electric motor, as well as consumed exergy and CO2 equivalent emissions. Equivalent CO2 results indicate that E100 hydrous ethanol can be a viable alternative to E22 gasoline with infrastructure ready in Brazil, since electric vehicles might have well to wheel emissions that make their usage pointless. Besides, change in electric matrix is found as significative, representing a high discrepancy of exergy usage for a vehicle in a determined cycle, thus emphasizing the need to direct each powertrain configuration to determined applications. In a Life Cycle Analysis, it is observed a higher usage of exergy and CO2 equivalent emissions related to production of electric vehicles, while such parameters vary during the vehicle’s usage depending on the electric matrix available for recharging. For vehicles imported from Europe and working in Brazil, electric vehicles have less equivalent emissions from around 75.000 kilometers for E22 and 100.000 kilometers for E100 (compared to ICEV produced and working in Brazil). The Renewability Indexes point to a possible direction of electric vehicles towards urban centers and ICEVs towards highway usage, whereas the parameter indicates that BEVs in Europa can be less sustaniable than E100 ICEVs