Teses e Dissertações
URI permanente para esta coleçãohttps://repositorio.fei.edu.br/handle/FEI/717
Navegar
17 resultados
Resultados da Pesquisa
Agora exibindo 1 - 10 de 17
- Cubo analisador paraconsistente com filtro de evidências e análise temporal(2023) Côrtes, Hyghor, MirandaInformações incertas e inconsistentes estão frequentemente presentes na entrada de qualquer sistema do mundo real que dependa de várias fontes de dados. Informações de grandezas físicas obtidas de rede de sensores, e sua interpretação por agentes artificiais inteligentes, em sistemas de engenharia, estão sujeitas à existência de inconsistências. Isso ocorre pois raciocinar com informações inconsistentes é impossível na lógica clássica, lógica intuicionista ou sistemas similares que respeitam o princípio da explosão e a lei da não-contradição. Uma família de lógicas não clássicas, chamadas de Lógicas Paraconsistentes, formaliza a ideia de que mesmo a partir de premissas inconsistentes, conclusões úteis podem ser tiradas. Neste contexto, a Lógica Paraconsistente com Anotação de Dois Valores (LPA2v), que utiliza um par de evidências favorável e desfavorável como anotações, tem sido particularmente bem-sucedida em aplicações de engenharia (por meio de implementação de algoritmos em sistemas informatizados). Estruturas chamadas Para-Analisadores podem ser construídas com essa lógica que fornece meios adequados para analisar o valor de verdade de uma proposição P sob evidências conflitantes/contraditórias. O trabalho relatado nesta tese estende os Para-Analisadores tradicionais com um filtro de evidências. Este novo modelo pode ser representado como uma estrutura de cubo representando vários reticulados de Para-Analisadores atribuídos à qualidade da evidência, que é atualizada de acordo com as medições realizadas em tempo de execução. A estrutura de análise paraconsistente tridimensional assim definida é chamada Cubo Analisador Paraconsistente com Filtro de Evidências e Análise Temporal (CAPet). Neste trabalho, ainda, conjuntos de CAPet são interligados formando Redes de Cubos Analisadores Paraconsistentes com Filtro de Evidências e Análise Temporal (chamadas de CAPetNETs), com o intuito de resolver problemas práticos complexos de engenharia. Para demonstração de resultados, como exemplo prático de engenharia de aplicação de CAPetNETs, nesta tese foi utilizado um problema de classificação de condições de operação de equipamentos em redes de dados de controle e supervisão de sistema elétrico. Neste contexto, distintas topologias de CAPetNETs foram definidas com o objetivo de identificar diversos tipos de falhas em equipamentos de rede de dados. A consolidação da inferência das CAPetNETs para cada equipamento permitiu uma identificação precisa da condição de operação dos equipamentos. Resultados em sistemas simulados mostram que as redes de CAPets são eficazes para lidar com inconsistências sem banalizar as inferências, além de fornecer uma decisão mais informada (mais fina) sobre classificação de condições de operação de equipamentos da rede de dados do exemplo prático, quando comparado com um Para-Analisador tradicional que não leva em consideração o filtro de evidências
- Representação de conhecimento no domínio da navegação social em robôs de serviço(2022) Pimentel, F. A. M.A navegação social é uma área de pesquisa que vem crescendo nos últimos anos. Entretanto, compartilhar ambientes com o ser humano de forma socialmente aceitável ainda é um desafio tanto no ambiente doméstico quanto comercial. A precisão e a segurança são características necessárias na navegação social e constituem um desafio, no entanto, o conforto humano é o principal objetivo nas interações que envolvem seres humanos. Como contribuições deste trabalho, é proposta a representação de conhecimento no domínio da navegação social utilizando ontologia, sendo utilizada aqui para gerar camadas de mapas semânticos para a navegação de robô social. Neste trabalho é apresentado o problema atual da navegação social em robôs de serviço, os principais conceitos relacionados com esta área, uma revisão do estado da arte e é proposto um modelo de navegação social utilizando ontologia como base para representação de conhecimento neste domínio. Portanto, este trabalho tem como objetivo, especificar uma nova ontologia que possa unificar e formalizar a representação de conhecimento no domínio da navegação social encontrados na literatura, enquanto otimiza de forma incremental os métodos utilizados em ontologia aplicada na navegação de robôs móveis. Este trabalho também traz o estudo comparativo de métodos, que estão diretamente ligados à segurança, à naturalidade dos robôs e ao conforto do ser humano. Também foi aplicado um estudo de caso incremental na plataforma Home Environment Robot Assistent (HERA) promovendo uma melhor navegação social. Vários ambientes, tipos de obstáculos, pessoas simuladas de forma estática e dinâmica utilizando modelos de força social, interagindo com outras pessoas e objetos foram avaliados, variando algoritmos de planejamento local e global, e mapas de custos. Aspectos de segurança e precisão em termos de tempo e espaço estimados, assim como o respeito ao espaço pessoal foram observados. Experimentos exaustivos foram realizados para cada método ou combinação de ambiente utilizando os parâmetros otimizados de cada método em um total de 84.120 experimentos. Com esses resultados, foi possível selecionar uma configuração para este sistema de navegação, enquanto o modelo de representação de conhecimento com ontologia foi desenvolvido. Nos experimentos reais foi possível observar a influência de uma navegação comum e de uma navegação social sobre o conforto do ser humano. Ao final deste estudo, é apresentada a estrutura atual da ontologia para navegação social como contribuição para a literatura e uma navegação otimizada com base nesta ontologia aplicada a plataforma robótica HERA
- Collaborative spatial reasoning for environment mapping using unmanned aerial vehicles(2022) Sécolo, A. C.The goal of this project is the investigation of existing spatial reasoning formalism for collaborative systems, in order to interpret a scene from multiple viewpoints in the task of environment mapping. Motivated by the increasing need of interaction between humans and robots, Qualitative Spatial Reasoning (QSR) theories are integrated into a single formalism for modeling the perceptions of remotely operated Unmanned Aircraft Vehicles (UAV). Qualitative theories enables the exchange of information between humans and robotic agents, so that they can perform tasks in collaborative missions involving searching and monitoring objectives in agriculture, natural disasters, searching and rescue tasks, among others. The combination of the studied spatial theories led to the development of two formalism: the LH Interval Calculus and the Collaborative Spatial reasoning. LH Interval Calculus consists in the combination of Region Connection Calculus and Allen’s Interval Algebra to describe the relations of two objects from an aerial point of view. Collaborative Spatial Reasoning combines the Cardinal Direction Calculus with LH Interval Calculus to the task of environment mapping where agents have a partial view of the scene. UAVs equipped with cameras are the platform used to test the formalism of this project, capturing images with a partial view of the environment, from different directions of flight. The results obtained showed that the two formalism proposed were successful in the task of mapping the environment
- Especialização de comunicação e políticas em aprendizado por reforço com múltiplos agentes heterogêneos utilizando redes neurais de grafos(2021) Meneghetti, D. R.Esta tese apresenta uma arquitetura de rede neural voltada ao aprendizado de políticas em sistemas multi-agentes totalmente cooperativos, compostos de agentes heterogêneos e comunicativos. O ambiente é formalizado como um Processo de Decisão de Markov Parcialmente Observável Descentralizado e os estados transformados em grafos direcionados rotulados atribuídos de agentes e entidades. Vértices representam agentes e entidades; os rótulos dos vértices, suas classes, sendo todos os agentes dentro de uma mesma classe considerados homogêneos entre si; arcos direcionados representam a capacidade dos agentes de adquirir informação de outras entidades; e vetores armazenados nos vértices representam as características que descrevem agentes e entidades, ou as observações dos agentes. A topologia de rede neural proposta usa camadas totalmente conectadas para codificar as observações dos agentes; convoluções relacionais em grafos para aprender mecanismos de comunicação específicos para diferentes pares de classes; e diferentes redes neurais treinadas utilizando aprendizado por reforço para modelar as políticas das classes de agentes. A tese apresenta dois métodos. No primeiro, os módulos de codificação e aprendizado de funções valor-ação são modelados como redes neurais distintas para cada classe de entidade e agente, e o treinamento do modelo é feito utilizando uma memória de repetição de transições. O segundo método usa compartilhamento de parâmetros entre as classes de agentes para obter uma rede neural com menos parâmetros, assim como emprega camadas recorrentes e treinamento com amostras de uma memória de repetição de episódios. A comunicação relacional é comparada à comunicação realizada através de mecanismos de atenção e à ausência de comunicação entre os agentes. Também é testada a compatibilidade do método com outras contribuições disponíveis na literatura, como a regularização por relações temporais e o mixing aditivo. Testes realizados no ambiente do StarCraft Multi-Agent Challenge demonstram que o emprego de camadas de convolução relacionais para a especialização da comunicação entre agentes viabiliza desempenho comparável ou superior aos outros métodos em todos os cenários testados, principalmente naqueles com maior número de classes de agentes. Já a combinação da comunicação relacional com o mixing aditivo apresentou, geralmente, os melhores resultados
- Análise e reconhecimento de padrões cognitivos em escutas musicais e sonoros em áudios(2020) Ribeiro, E.Estamos envolvidos em um ambiente repleto de sons ao nosso redor. Estudar e analisar os impactos que a prática musical causa e mostrar matematicamente que esta prática pode proporcionar efeitos cognitivos significativos no cérebro humano são as principais motivações desta tese. Em mais detalhes, o objetivo desta tese foi desenvolver uma metodologia capaz de caracterizar os padrões de ativações corticais gerados durante o registro de sinais de Eletroencefalograma (EEG) por meio de técnicas de reconhecimento de padrões em estatística, além de analisar as características acústicas comumente empregadas neste contexto, a fim de revelar se as mesmas são estatisticamente relevantes. Foi desenvolvido inicialmente um arcabouço computacional para abordar o problema de classificação de 2 grupos de amostras baseado em dados de sinais de EEG extraídos de voluntários músicos e não-músicos durante uma tarefa auditiva, para predizer se uma determinada pessoa é um músico ou não. Os resultados demonstraram que é possível classificar os grupos amostrados com acurácias que variam de 69.2% a 93.8%, permitindo não somente uma melhor descrição dos padrões de ativações neurais que caracterizam os voluntários músicos e não-músicos, mas também destacando como esses padrões se alteram nas regiões de transição e fronteiras de decisão que separam os grupos amostrados, indicando uma separação linear plausível entre estes grupos. Adicionalmente, como outra contribuição original desta tese, foram analisados os sinais de áudio de uma base de dados pública e internacionalmente referenciada que contém 1000 trechos musicais com 10 gêneros distintos, para investigar similaridades numéricas entre as características acústicas de baixo nível extraídas dos áudios e comumente exploradas na literatura afim. Os resultados obtidos mostram um comportamento de agrupamento similar entre essas características para todas as músicas analisadas, independente do gênero musical. Foi possível então discutir de maneira inédita a relação entre a forma como as características acústicas das músicas são descritas pela literatura e como as mesmas são agrupadas estatisticamente, revelando que a informação que usamos para processar cognitivamente essas características sonoras é implicitamente estatística. Embora todos os métodos descritos e implementados nesta tese sejam baseados em sinais de EEG, acredita-se que os mesmos possam ser estendidos para outros tipos de sinais cognitivos multivariados, como de Imagem de Ressonância Magnética funcional (fMRI), permitindo uma compreensão maior cortical e sub-corticalmente de funcionamento do nosso cérebro durante escutas musicais
- Sistema de posicionamento de robôs em partidas de futebol baseado em inteligência coletiva por enxame(2020) Laureano, Marcos Aurelio PchekA equipe Small Size League (SSL) da RoboFEI existe desde 2008. Uma das motivações para a existência do projeto é aplicação dos conhecimentos em eletrônica, mecânica e programação no uso e desenvolvimento de algoritmos voltados para a Inteligência Artificial (IA). A IA abrange várias técnicas, como aprendizado, otimização e algoritmos bioinspirados. Algoritmos bioinspirados são utilizados para os mais diversos propósitos, inclusive para que robôs possam trabalhar de forma colaborativa. A liga SSL evoluiu com o passar dos anos e algumas mudanças já foram realizadas como o aumento das dimensões do campo e quantidade de robôs. Essa evolução também traz maiores possibilidades de jogadas e aumento da complexidade de uma partida. O posicionamento dos robôs em campo torna-se importante como mecanismo de defesa e ataque. Neste cenário, no trabalho aqui relatrado é proposto a utilização do algoritmo Particle Swarm Optimization (Otimização de Enxame de Partículas) (PSO) como uma opção de inteligência coletiva aplicada para determinar o posicionamento dos robôs em partidas de futebol. São propostas novas funções de aptidão para defesa do gol e bloqueio de passes na liga SSL. Para o desenvolvimento dessas funções, princípios táticos de jogos do futebol moderno foram verificados. Para avaliar a efetividade das funções de otimização, são propostas novas métricas para mensurar o Índice de Performance do Posicionamento (IPOS) dos posicionamentos originais e otimizados. Essas métricas estão baseadas no Sistema de Avaliação Tática no Futebol (FUT–SAT) que define o Índice de Performance Tática (IPT) de uma equipe baseado em determinados critérios e posicionamentos em campo. Para avaliação da efetividade das funções de aptidão, foram selecionadas jogadas com gols efetivos da RoboCup 2019 – Liga A. Essas jogadas foram separadas do início do toque da bola até a finalização em gol em intervalos de 200 milissegundos e nomeadas de instantes. Para cada instante o posicionamento da defesa é otimizado. Ao final são aplicadas as métricas de avaliação do novo posicionamento e comparadas com as originais. A aplicação das métricas de avaliação e inspeção visual demonstram que os posicionamentos sugeridos poderiam ter impedido a continuidade da jogada em vários momentos antes da finalização ao gol. Os experimentos demonstraram a efetividade da otimização e das métricas. Finalmente, as funções de aptidão e métricas podem ser aplicadas em outras categorias de futebol de robôs
- Sistemas cognitivos para agentes robóticos baseado em aprendizado profundo(2019) Silva, I. J.