Teses e Dissertações
URI permanente para esta coleçãohttps://repositorio.fei.edu.br/handle/FEI/717
Navegar
7 resultados
Resultados da Pesquisa
Agora exibindo 1 - 7 de 7
- Aprendizado por reforço profundo com redes recorrentes aplicado a negociação do minicontrato futuro de dólar(2023) Kinoshita, J. K.Recentemente há um aumento exponencial no uso de técnicas de aprendizado de máquina no mercado financeiro, principalmente para negociação de ações, na tentativa de prever o seu preço futuro. O objetivo desse projeto é desenvolver um sistema de negociação inteligente para o Minicontrato Futuro de Dólar, baseado no uso de aprendizado por reforço, usando o Deep Recurrent Q learning, um modelo de Redes Neurais Convolucionais combinadas com as Redes Neurais Recorrentes. O treinamento foi baseado em uma base da dados históricos do ativo e o agente realizou três ações: comprar, vender, manter o ativo, sempre visando o máximo retorno financeiro. Os experimentos realizados demonstraram que o sistema proposto teve um desempenho melhor do que as estratégias de Buy and Hold, um modelo baseado na Deep Q Network, um Fundo Cambial e uma estratégia baseada no indicador técnico MACD. Palavras-chave: Aprendizado por Reforço Profundo. Redes Neurais Convolucionais. Redes Neurais Recorrentes. Long Short-Term Network. Deep Recurrent Q Network. Mercado Futuro
- Rede de unidades recorrentes chaveadas e transformadas discretas de ondaletas à previsão e operação no mercado financeiro(2021) Biazon, V.Operar no mercado de ações sempre trás consigo o desafio de escolher a melhor decisão a ser tomada a cada passo no tempo. O problema é intensificado pela teoria de que não é possível prever uma série temporal do mercado financeiro uma vez que toda informação relacionada ao preço da ação já está contida em si, teoria conhecida como Hipótese dos Mercados Eficientes - Efficient Market Hypothesis (EMH). Embora o mercado em geral não tenha tendências distinguíveis, portanto sendo consistente com a EMH, existem várias janelas de tempo onde há alguma previsibilidade de certa extensão nos dados caso consideremos o uso de indicadores técnicos. Neste trabalho é proposto um novo modelo que busca se beneficiar de tais períodos operando para escolher suas decisões e aguardando o melhor momento para executá-las. Este modelo, chamado Rede de Transformada Discreta de Ondaletas e Unidade Recorrente Chaveada - Discrete Wavelet Transform Gated Recurrent Unit Network (DWT-GRU), é dividido em três módulos, sendo eles, o pré processamento dos dados pela transformada de wavelets, o treinamento e a predição do preço de fechamento da ação para dois dias no futuro e a tomada da decisão baseada na avaliação do gradiente do preço de fechamento. O modelo proposto foi comparado com outras arquiteturas de Rede Neural Recorrente - Recurrent Neural Network (RNN), com e sem o uso de pré processamento de ondaletas, e a estratégia de "comprar e segurar". Os resultados mostraram que o modelo proposto superou todos as métricas estatísticas, de acurácia, precisão, revocação e F1, e retorno financeiro de todos os modelos de comparação estabelecidos nas ações analisadas do mercado financeiro brasileiro. As ações analisadas como base para o estudo foram as blue-chips do índice do IBOVESPA sendo elas a PETR4, VALE3, ITUB4, ABEV3, e a Fundo de Índice Negociado em Bolsa - Exchange-Traded Fund (ETF) que espelha o próprio índice, BOVA11. Para dados de treinamento foram utilizados dados desde 2001 para as ações e desde 2008 para a Fundo de Índice Negociado em Bolsa - Exchange-Traded Fund (ETF) BOVA11. Por fim é apresentado o resultado financeiro da aplicação do algoritmo em operações em tempo real de swing-trade comprovando sua eficácia e vencendo a estratégia de "comprar e segurar".
Dissertação Redes neurais convolucionais aplicadas à detecção de objetos no domínio de futebol de robôs humanoides(2021) Abreu, Lucas Ribeiro deA RoboCup é uma das maiores iniciativas no ramo de pesquisa em robótica. Essa iniciativa considera o futebol como um dos maiores desafios para robôs e tem o intuito de promover e ganhar um jogo de futebol entre humanos e robôs até o ano de 2050. O módulo de visão dos robôs é um sistema crítico, pois precisa localizar e classificar objetos de interesse ao robô em tempo real, com o objetivo de tomar a melhor ação dado o ambiente a sua volta. Este trabalho avalia redes neurais convolucionais profundas para detecção da bola de futebol e de robôs. Para tal tarefa, cinco arquiteturas da literatura foram escolhidas e treinadas utilizando conceitos de transferência de aprendizado e aumento de dados. Os modelos foram avaliados em um conjunto de dados de teste, gerando resultados promissores em termos de precisão e quadros por segundo. O melhor modelo atingiu um mAP de 0.98 com 50% de interseção a uma taxa de 14.7 quadros por segundo, sendo executado em uma CPU.- Redes neurais convolucionais aplicadas à negociação de ativos no mercado financeiro(2021) Nascimento, D. G.Previsão do mercado financeiro tem sido um desafio bastante popular nas pesquisas de Aprendizado de Máquina (AM). O desejo da maioria dos investidores é tomar decisões com base em critérios objetivos que venham a proporcionar maior retorno nas operações. Recentemente, estudos têm usado técnicas de Aprendizado Profundo (AP), como Redes Neurais Convolucionais (Convolutional Neural Networks - CNN), para realizar regressão nos preços ou classificação de sinal de negociação em ativos do mercado financeiro. Neste trabalho, é proposta uma arquitetura de sistema que utilizada uma CNN a fim de realizar a indicação da melhor operação para cada momento no mercado de ações, este sistema foi chamado CNN Trading Classifier (CNN-TC). Este sistema é composto por pré-processamento dos dados, classificação pelo modelo CNN e tomada de decisão no mercado. O mesmo foi avaliado com base em dados das bolsas de valores brasileira e americana em três períodos diferentes, para isto foram feitas avaliação estatística, utilizando as métricas de classificação acurácia, precisão, revocação e F1, e financeira com base nas classificações realizadas pelo modelo. Além disso foi realizado um teste em ambiente simulado utilizando o software MetaTrader a fim de atestar a eficácia desta abordagem. Os resultados mostram que o sistema teve resultados estatísticos e financeiros melhores na maioria das avaliações em comparação com o uso de outros modelos de AP e superou a estratégia Buy and Hold (BH) e retornos da renda fixa.
- Sistemas cognitivos para agentes robóticos baseado em aprendizado profundo(2019) Silva, I. J.
Dissertação Uso de algoritmos de classificação de imagens para detecção de formas humanas em cenas aéreas de desastres(2015) Leite, Fernando BarbosaA proposta deste trabalho é a detecção de corpos humanos em cenas pós-desastres sob o ponto de vista aéreo, ou seja, de cima para baixo. No intuito de alcançar este objetivo procurou-se maximizar a exatidão na detecção minimizando o número de falsos positivos e negativos, levando em consideração o menor tempo possível entre detecções. Como parte integrante desta solução foi utilizado como descritor de atributos o CENTRIST, normalmente usado para descrever a topologia de cenas, e aqui, empregado para detectar o contorno humano e suas partes e que tem como virtude, a captura da estrutura global e não a textura da imagem, além de, processar em um tempo linear. Estas propriedades são relevantes, já que, o tempo de processamento é um dos parâmetros de avaliação do algoritmo como um todo. Porém o reconhecimento do corpo humano em uma cena de pós-desastre não é uma tarefa de soluções bem estudadas, como na detecção de um pedestre (posição vertical), pois, o corpo humano nesta situação sofre deformação, rotação e oclusão. A solução aqui então é uma associação de métodos diversos onde para detecção do corpo completo, caso seja possível detectá-lo em uma imagem, é realizado pela Máquina de vetores de Suporte (núcleo Linear e HIK) em cascata e tendo o algoritmo real Adaboost como alternativa ao núcleo HIK, para teste de desempenho. No caso de não haver uma detecção de corpo completo na imagem foram criados comitês de especialistas na detecção dos membros do corpo humano (cabeça, braços e pernas), formados dos seguintes classificadores: Máquina de vetores de Suporte (Linear), Árvore de Decisão e Rede Neural Artificial. A tomada de decisão, se há um corpo humano em uma imagem, é então avaliada pela concordância booleana entre comitês e pela avaliação final por uma Rede Bayesiana, que são as principais contribuições deste trabalho. Os resultados deste trabalho indicam o potencial de detecção de formas humanas em situações generalizadas de desastres.